Corporate Banner
Satellite Banner
Proteomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

New Research Helps Explain Why Bird Flu has not caused a Pandemic

Published: Thursday, November 19, 2009
Last Updated: Thursday, November 19, 2009
Bookmark and Share
Bird flu viruses would have to make at least two simultaneous genetic mutations before they could be transmitted readily from human to human, study explains.

Bird flu viruses would have to make at least two simultaneous genetic mutations before they could be transmitted readily from human to human, according to research published in PLoS ONE.

The authors of the new study, from Imperial College London, the University of Reading and the University of North Carolina, USA, argue that it is very unlikely that two genetic mutations would occur at the same time.

The new study adds to our understanding of why avian influenza has not yet caused a pandemic. Earlier this year, the Imperial researchers also showed that avian influenza viruses do not thrive in humans because, at 32 degrees Celsius, the temperature inside a person's nose is too low.

H5 strains of influenza are widespread in bird populations around the world. The viruses occasionally infect humans and the H5N1 strain has infected more than 400 people since 2003.

H5N1 has a high mortality rate in humans, at around 60 per cent, but to date there has been no sustained human to human transmission of the virus, which would need to happen in order for a pandemic to occur.

The new study suggests that one reason why H5N1 has not yet caused a pandemic is that two genetic mutations would need to happen to the virus at the same time in order to enable it to infect the right cells and become transmissible. At present, H5 viruses can only infect one of the two main types of cell in the mouth and nose, a type of cell known as a ciliated cell. In order for H5 to transmit from human to human, it would need to be able to infect the other, non-ciliated type of cell as well.

To infect a cell, the influenza virus uses a protein called HA to attach itself to a receptor molecule on the cell's surface. However, it can only do this if the HA protein fits that particular receptor. The research shows that H5 would only be able to make this kind of adaptation and fit the receptor on the cells that are important for virus transmission if it went through two simultaneous genetic mutations.

Professor Wendy Barclay, corresponding author of the study from the Division of Investigative Science at Imperial College London, said: "H5N1 is a particularly nasty virus, so when humans started to get infected with bird flu, people started to panic. An H5N1 pandemic would be devastating for global health. Thankfully, we haven't yet had a major outbreak, and this has led some people to ask, what happened to bird flu? We wanted to know why the virus hasn't been able to jump from human to human easily.

"Our new research suggests that it is less likely than we thought that H5N1 will cause a pandemic, because it's far harder for it to infect the right cells. The odds of it undergoing the kind of double mutation that would be needed are extremely low. However, viruses mutate all the time, so we shouldn't be complacent. Our new findings do not mean that this kind of pandemic could never happen. It's important that scientists keep working on vaccines so that people can be protected if such an event occurs," added Professor Barclay.

Professor Ian Jones, leader of the collaborating group at the University of Reading, added: "It would have been impossible to do this research using mutation of the real H5N1 virus as we could have been creating the very strain we fear. However, our novel recombinant approach has allowed us to safely address the question of H5 adaptation and provide the answer that it is very unlikely."

In addition to explaining why bird flu's ability to transmit between humans is limited, the new research also gives scientists a better understanding of the virus. They believe that this could help the development of a better vaccine against bird flu, in the unlikely event that one was needed in the future.

The researchers used a realistic model of the inside of a human airway to study H5 binding to human cells. They made genetic changes to the H5 HA protein to change its shape, to see if they could make the virus recognize and infect the right types of cells. Results showed that the virus would need two genetic changes occurring at once in its genome before it could infect these cells.

The researchers then investigated intermediate forms of the virus, with one or the other mutation, to see if the change could occur gradually. They found that intermediate versions of the virus could not infect human cells, so would die out before they could be transmitted. The researchers say this means the two genetic mutations would need to occur simultaneously.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Bacterial Motors Unveiled
Nanoscopic 3D imaging has revealed how different bacteria have geared their tiny propeller motors for a wide range of swimming abilities.
Thursday, March 17, 2016
Infant Milk Formula Does Not Reduce Risk of Eczema and Allergies, Says New Study
Researchers at Imperial College London have found a type of baby formula does not reduce allergy risk - despite previous claims to the contrary.
Wednesday, March 09, 2016
Flu Virus Hijacking Tactics Revealed
Scientists at Imperial College London have discovered how flu viruses 'hijack' cell machinery when they infect the body.
Thursday, January 07, 2016
Discovery of Trigger for Bugs’ Defences Could Lead to New Antibiotics
New research shows that sigma54 holds a bacterium’s defences back until it encounters stress.
Friday, August 21, 2015
Breakthrough Could Lead to New Antibiotics
Scientists have exposed a chink in the armour of disease-causing bugs, with a new discovery about a protein that controls bacterial defences.
Friday, August 21, 2015
New Genetic Form of Obesity and Diabetes Discovered
Scientists have discovered a new inherited form of obesity and type 2 diabetes in humans.
Tuesday, June 30, 2015
Protein That Boosts Immunity to Viruses and Cancer Discovered
Researchers now developing a gene therapy designed to boost the infection-fighting cells.
Saturday, April 18, 2015
Biomarker Discovery Sheds New Light on Heart Attack Risk of Arthritis Drugs
Drug may be given a new lease of life.
Thursday, December 11, 2014
First Pictures of BRCA2 Protein Show How it Works to Repair DNA
Researchers purified the protein and used electron microscopy to reveal its structure.
Thursday, October 09, 2014
Protein ‘Map’ Could Lead to Potent New Cancer Drugs
Findings will help scientists to design drugs that could target NMT enzyme.
Saturday, September 27, 2014
New Developments in Big, Open Access Data for Dementia
Prime Minister, David Cameron, pledged a UK commitment to discover new drugs and treatment that could slow down the on-set of dementia or even deliver a cure by 2025.
Thursday, June 19, 2014
New Discovery Gives Hope that Nerves Could be Repaired After Spinal Cord Injury
Research highlights the role of a protein called P300/CBP-associated factor.
Tuesday, April 08, 2014
Scientists Design Protein to Prevent Prostate Cancer Cell Growth
New protein blocks the hormone receptors and consequently stops cancer cells from growing in the laboratory.
Thursday, January 30, 2014
Designer Protein to Prevent Prostate Cancer Cell Growth
Researchers are creating a "designer" protein that could be effective at treating prostate cancer when other therapies fail.
Friday, January 17, 2014
New Clues to How Bacteria Evade Antibiotics
Scientists have made an important advance in understanding how a subset of bacterial cells escape being killed by many antibiotics.
Friday, January 10, 2014
Scientific News
New Autism Blood Biomarker Identified
Researchers at UT Southwestern Medical Center have identified a blood biomarker that may aid in earlier diagnosis of children with autism spectrum disorder, or ASD.
FNIH Launches Project to Evaluate Biomarkers in Cancer Patients
Company has announced that it has launched a new project to evaluate the effectiveness of liquid biopsies as biomarkers in colorectal cancer patients.
HIV Particles Used to Trap Intact Mammalian Protein Complexes
Belgian scientists from VIB and UGent developed Virotrap, a viral particle sorting approach for purifying protein complexes under native conditions.
Potential “Good Fat” Biomarker
New method to measure the activity of energy consuming brown fat cells could ease the testing weight loss drugs.
Computational Model Finds New Protein-Protein Interactions
Researchers at University of Pittsburgh have discovered 500 new protein-protein interactions (PPIs) associated with genes linked to schizophrenia.
New Insights into Gene Regulation
Researchers have solved the three-dimensional structure of a gene repression complex that is known to play a role in cancer.
Controlling RNA in Living Cells
Modular, programmable proteins can be used to track or manipulate gene expression.
Soy Shows Promise as Natural Anti-Microbial Agent
Soy isoflavones and peptides may inhibit the growth of microbial pathogens that cause food-borne illnesses, according to a new study from University of Guelph researchers.
Potential Target for Revolutionary Antibiotics
An international team of including the Lomonosov Moscow State University researchers discovered which enzyme enables Escherichia coli bacterium (E. coli) to breathe.
DNA Barcodes Gone Wild
A team of researchers at University of Toronto’s Donnelly Centre and Sinai Health System’s Lunenfeld-Tanenbaum Research Institute (LTRI) has developed a new technology that can stitch together DNA barcodes inside a cell to simultaneously search amongst millions of protein pairs for protein interactions.
Scroll Up
Scroll Down
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!