Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Scientists Find Key Protein that Suppresses Prostate Cancer Growth in the Laboratory

Published: Tuesday, February 01, 2011
Last Updated: Tuesday, February 01, 2011
Bookmark and Share
Scientists at Imperial College London found that a protein called FUS inhibits the growth of prostate cancer cells in the laboratory, and activates pathways that lead to cell suicide.

Cancer researchers have discovered an important protein, produced naturally inside cells, that appears to suppress the growth of prostate cancer cells in the laboratory. The findings, published tomorrow in the journal Cancer Research, offer promising leads for research towards new treatments.

Prostate cancer is the most common cancer among men in the UK, with 37,500 men diagnosed with the disease every year. Many prostate cancers are slow growing, but in some cases the cancer is aggressive and spreads to other parts of the body, such as the bone. These cases are much more likely to be fatal.

In the new study, scientists at Imperial College London found that a protein called FUS inhibits the growth of prostate cancer cells in the laboratory, and activates pathways that lead to cell suicide.

The researchers also looked for the FUS protein in samples from prostate cancer patients. They found that in patients with high levels of FUS, the cancer was less aggressive and was less likely to spread to the bone. Higher levels of FUS also correlated with longer survival. The results suggest that FUS might be a useful marker that can give doctors an indication of how aggressive a tumour will be.

"At the moment, there's no way to say whether a prostate tumour will kill you or be fairly harmless," said Dr Charlotte Bevan, senior author of the study, from the Department of Surgery and Cancer at Imperial College London. "Current hormonal therapies only work for a limited time, and chemotherapy is often ineffective against prostate cancer, so there's a real need for new treatments.

"These findings suggest that FUS might be able to suppress tumour growth and stop it from spreading to other parts of the body where it can be deadly. It's early stages yet but if further studies confirm these findings, then FUS might be a promising target for future therapies."

Prostate cancer depends on male hormones to progress as these hormones stimulate the cancer cells to divide, enabling the tumour to grow. Treatments that reduce hormone levels or stop them from working are initially effective, but eventually the tumour stops responding to this treatment and becomes more aggressive.

Dr Bevan and her team began by exposing prostate cancer cells to male hormones and looking at how the levels of different proteins changed. They discovered that the hormones made the cells produce less of the FUS protein, and examined further whether FUS might influence cell growth by inserting extra copies of the gene for FUS into cells grown in culture. They found that making the cells produce more FUS led to a reduction in the number of cancer cells in the dish.

Greg Brooke, first author of the study, from the Department of Surgery and Cancer at Imperial College London said: "Our study suggests that FUS is a crucial link that connects male hormones with cell division. The next step is to investigate whether FUS could be a useful test of how aggressive prostate cancer is. Then we might look for ways to boost FUS levels in patients to see if that would slow tumour growth or improve response to hormone therapy.

"If FUS really is a tumour suppressor, it might also be involved in other cancers, such as breast cancer, which has significant similarities with prostate cancer."

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Discovery of Trigger for Bugs’ Defences Could Lead to New Antibiotics
New research shows that sigma54 holds a bacterium’s defences back until it encounters stress.
Friday, August 21, 2015
Breakthrough Could Lead to New Antibiotics
Scientists have exposed a chink in the armour of disease-causing bugs, with a new discovery about a protein that controls bacterial defences.
Friday, August 21, 2015
New Genetic Form of Obesity and Diabetes Discovered
Scientists have discovered a new inherited form of obesity and type 2 diabetes in humans.
Tuesday, June 30, 2015
Protein That Boosts Immunity to Viruses and Cancer Discovered
Researchers now developing a gene therapy designed to boost the infection-fighting cells.
Saturday, April 18, 2015
Biomarker Discovery Sheds New Light on Heart Attack Risk of Arthritis Drugs
Drug may be given a new lease of life.
Thursday, December 11, 2014
First Pictures of BRCA2 Protein Show How it Works to Repair DNA
Researchers purified the protein and used electron microscopy to reveal its structure.
Thursday, October 09, 2014
Protein ‘Map’ Could Lead to Potent New Cancer Drugs
Findings will help scientists to design drugs that could target NMT enzyme.
Saturday, September 27, 2014
New Developments in Big, Open Access Data for Dementia
Prime Minister, David Cameron, pledged a UK commitment to discover new drugs and treatment that could slow down the on-set of dementia or even deliver a cure by 2025.
Thursday, June 19, 2014
New Discovery Gives Hope that Nerves Could be Repaired After Spinal Cord Injury
Research highlights the role of a protein called P300/CBP-associated factor.
Tuesday, April 08, 2014
Scientists Design Protein to Prevent Prostate Cancer Cell Growth
New protein blocks the hormone receptors and consequently stops cancer cells from growing in the laboratory.
Thursday, January 30, 2014
Designer Protein to Prevent Prostate Cancer Cell Growth
Researchers are creating a "designer" protein that could be effective at treating prostate cancer when other therapies fail.
Friday, January 17, 2014
New Clues to How Bacteria Evade Antibiotics
Scientists have made an important advance in understanding how a subset of bacterial cells escape being killed by many antibiotics.
Friday, January 10, 2014
Cosmic Factory for Making Building Blocks of Life
Research published in the journal Nature Geoscience details the discovery of a 'cosmic factory' for producing amino acids.
Monday, September 16, 2013
Scientists Develop Tools to Make More Complex Biological Machines from Yeast
Researchers have demonstrated way of creating a new type of biological "wire", using proteins that interact with DNA.
Monday, March 19, 2012
"Popeye" Proteins Help the Heart Adapt to Stress
Study help scientists to develop new treatments for abnormal heart rhythms.
Tuesday, February 21, 2012
Scientific News
How Cell Growth Triggers Cell Division
Researchers in Jan Skotheim's lab have discovered a previously unknown mechanism that controls how large cells grow, an insight that could one day provide insight into attacking diseases such as cancer.
Probing the Forces Involved in Creating The Mitotic Spindle
Scientists at The Rockefeller University reveal new insights into the mechanical forces that govern elements of the mitotic spindle formation.
Identifying Cancer’s Food Sensors May Help to Halt Tumour Growth
Oxford University researchers have identified a protein used by tumours to help them detect food supplies. Initial studies show that targeting the protein could restrict cancerous cells’ ability to grow.
Specific Variations in RNA Splicing Linked to Breast Cancer
Researchers have identified cellular changes that may play a role in converting normal breast cells into tumors. Targeting these changes could potentially lead to therapies for some forms of breast cancer.
Thousands of Protein Interactions Identified
Thanks to the work by Utrecht University researcher Fan Liu and her colleagues, it is now possible to map the interactions between proteins in human cells.
Are Changes to Current Colorectal Cancer Screening Guidelines Required?
Editorial suggests more research is needed to pinpoint age to end aggressive screening.
Cell-Cell Repulsion Mystery Solved
University of Basel findings could be important for cancer research.
Assessing Cancer Patient Survival and Drug Sensitivity
RNA editing events another way to investigate biomarkers and therapy targets.
New Molecular Marker for Killer Cells
Cell marker enables prognosis about the course of infections.
Controlling Body Temperature in Response to 'Fight or Flight'
New research in The FASEB Journal suggests that blocking TRPV1 protein causes an increased release of noradrenaline, leading to an increase in core body temperatures.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos