Corporate Banner
Satellite Banner
Proteomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Overlooked Peptide Reveals Clues to Causes of Alzheimer's Disease

Published: Monday, July 04, 2011
Last Updated: Monday, July 04, 2011
Bookmark and Share
Highly aggregative and neurotoxic amyloid peptide A-ß-43 points the way to new approaches for AD diagnosis and treatment.

Researchers at the RIKEN Brain Science Institute (BSI) and their collaborators have shed light on the function of a little-studied amyloid peptide in promoting Alzheimer's disease (AD).

Their surprising findings reveal that the peptide is more abundant, more neurotoxic, and exhibits a higher propensity to aggregate than amyloidogenic agents studied in earlier research, suggesting a potential role in new approaches for preventing AD-causing amyloidosis.

An irreversible, progressive brain disease affecting millions worldwide, Alzheimer's disease is devastating for its victims, robbing them of their memory and cognitive skills and ultimately of their lives. Even after decades of research, however, the causes of AD remain elusive.

Two features in the brain, abnormal clumps (senile plaques) and tangled bundles of fibers (neurofibrillary tangles), are known to characterize AD, but there is little consensus on the link between these features and the underlying roots of the disease.

One hypothesis that has attracted widespread support proposes that AD is caused by the buildup of the senile plaques, and in particular of their main constituent, amyloid-β peptides (Aβ).

Two major forms of Aβ, Aβ40 and Aβ42, have been associated with genetic mutations causing early-onset AD, and have thus received considerable research attention. The role of longer Aβ species, in contrast, which also exist in the brains of Alzheimer's patients, has not yet been fully investigated.

In their current work, the researchers focused on Aβ43, an amyloid-β peptide found just as often in patient brains as Aβ42, but about which relatively little is known.

To study the peptide's role in AD, they generated mice with a mutation causing overproduction of Aβ43, and used a highly sensitive system to distinguish between concentrations of Aβ40, A42 and Aβ43.

Their surprising results reveal that Aβ43 is even more abundant in the brains of AD patients than Aβ40, and more neurotoxic than Aβ42. Aβ43 also exhibits the highest propensity to aggregate and considerably accelerates amyloid pathology.

Moreover, unlike the other two Aβ species, which exist in human and mouse brains at birth, Aβ43 levels appear to increase with age, consistent with the pattern of AD onset.

Published in the journal Nature Neuroscience, the findings thus reveal the possible value of Aβ43 as a biomarker for diagnosis of AD and suggest a potential role in new approaches for preventing AD-causing amyloidosis, promising hope to AD sufferers around the world.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

The Genetic Roots of Adolescent Scoliosis
Scientists at the RIKEN Center for Integrative Medical Sciences in collaboration with Keio University in Japan have discovered a gene that is linked to susceptibility of Scoliosis.
Thursday, July 30, 2015
New Fluorescent Protein from Eel Revolutionizes Key Clinical Assay
Unagi, the sea-going Japanese freshwater eel, harbors a fluorescent protein that could serve as the basis for a revolutionary new clinical test.
Friday, June 21, 2013
Scientific News
Cellular Contamination Pathway for Heavy Elements Identified
Berkeley Lab scientists find that an iron-binding protein can transport actinides into cells.
Lemon Juice and Human Norovirus
Citric acid may prevent the highly contagious norovirus from infecting humans, scientists discovered from the German Cancer Research Center.
Signature of Microbiomes Linked to Schizophrenia
Studying microbiomes in throat may help identify causes and treatments of brain disorder.
Structural Discoveries Could Aid in Better Drug Design
Scientists have uncovered the structural details of how some proteins interact to turn two different signals into a single integrated output.
Protein Found to Play a Key Role in Blocking Pathogen Survival
Calprotectin fends off microbial invaders by limiting access to iron, an important nutrient.
Study Identifies the Off Switch for Biofilm Formation
New discovery could help prevent the formation of infectious bacterial films on hospital equipment.
How DNA ‘Proofreader’ Proteins Pick and Edit Their Reading Material
Researchers from North Carolina State University and the University of North Carolina at Chapel Hill have discovered how two important proofreader proteins know where to look for errors during DNA replication and how they work together to signal the body’s repair mechanism.
Protein Found to Control Inflammatory Response
A new Northwestern Medicine study shows that a protein called POP1 prevents severe inflammation and, potentially, diseases caused by excessive inflammatory responses.
X-ray Laser Experiment Could Help in Designing Drugs for Brain Disorders
Scientists found that when two protein structures in the brain join up, they act as an amplifier for a slight increase in calcium concentration, triggering a gunshot-like release of neurotransmitters from one neuron to another.
Team Identifies Structure of Tumor-Suppressing Protein
An international group of researchers led by Carnegie Mellon University physicists Mathias Lösche and Frank Heinrich have established the structure of an important tumor suppressing protein, PTEN.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!