Corporate Banner
Satellite Banner
Proteomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Leica Microsystems Introduces Tissue IA 2.0

Published: Friday, March 30, 2012
Last Updated: Friday, March 30, 2012
Bookmark and Share
Quantitative image analysis fluorescence and brightfield analysis for digital pathology.

Leica Microsystems has announced the release of Tissue IA 2.0, high performance image analysis for discovery research.

Combining fluorescence and brightfield analysis capabilities in a single platform, with precision cell modelling, Tissue IA 2.0 offers a superior solution for IHC biomarker quantification.

Tissue IA 2.0 joins the Total Digital Pathology portfolio from Leica, providing streamlined end-to-end excellence in capture, management and analysis of digital pathology images.

A major challenge in research is retrieval of quantitative, reproducible data from tissue-based IHC studies. Tissue IA 2.0 provides expert tools for researchers to extract the most from their studies.

Powerful color separation and multi-marker colocalization functionality provides advanced insight and unbiased measurement of multiple antigen immunostaining in brightfield or fluorescent samples.

Sophisticated cell modelling accurately detects and quantifies differential expression of staining in cellular compartments, providing detailed insight into cytoplasmic, membrane and nuclear biomarker localization.

The advanced dual staining capabilities in Tissue IA 2.0 enable researchers to identify cell cohorts at the molecular level.

Use one marker to identify a population of interest and then quantify expression of a second, providing exceptional analysis performance and greater understanding of a user’s slides.

Algorithms are easily adjusted and optimized for different markers, tissue and protocols giving a flexible platform for drug discovery applications.

Easy to deploy and easy to use, the Tissue IA web-accessible interface means that users can take their analysis with them wherever they go.

With high throughput batch analysis capacity, Tissue IA 2.0 will process whole slides, regions of interest or tissue microarray cores, and automatically integrate analysis results with a user’s slides.

A built-in upload interface facilitating integration of algorithms from 3rd party software solutions, gives greater flexibility to further expand analysis options.

Dr. Donal O’Shea, Head of Digital Pathology in Leica Microsystems, says: “Mulitplexing is of growing importance in translational research and tools to help quantify the expression and location of multiple biomarkers concurrently in tissue are a real requirement. TissueIA 2.0 delivers for the user through offering chromogenic and fluorescence quantification and co-localization, cell based histoscoring on multi-compartmental IHC staining and the power to include and exclude cell populations based on biomarker expression. In conjunction with our SCN400 F and Ariol platforms, this further expands our Digital Pathology portfolio for the life science and clinical researcher and demonstrates our ongoing commitment to this area.”

Tissue IA 2.0, with its powerful, streamlined analysis, is the ideal choice for biomarker discovery and translational research. Its unique combination of flexibility, automation and ease-of-use make it an unparalleled tool for digital pathology research.

To learn more about Tissue IA 2.0, please visit http://www.leica-microsystems.com/products/digital-pathology/analyze/details/product/tissue-ia.

Leica Microsystems will be at the American Association for Cancer Research Annual Meeting 2012, March 31 - April 4, Chicago, IL.

Visit Leica at booth 4103 to experience our new image analysis solution for Digital Pathology.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Lemon Juice and Human Norovirus
Citric acid may prevent the highly contagious norovirus from infecting humans, scientists discovered from the German Cancer Research Center.
Signature of Microbiomes Linked to Schizophrenia
Studying microbiomes in throat may help identify causes and treatments of brain disorder.
Structural Discoveries Could Aid in Better Drug Design
Scientists have uncovered the structural details of how some proteins interact to turn two different signals into a single integrated output.
Protein Found to Play a Key Role in Blocking Pathogen Survival
Calprotectin fends off microbial invaders by limiting access to iron, an important nutrient.
Study Identifies the Off Switch for Biofilm Formation
New discovery could help prevent the formation of infectious bacterial films on hospital equipment.
How DNA ‘Proofreader’ Proteins Pick and Edit Their Reading Material
Researchers from North Carolina State University and the University of North Carolina at Chapel Hill have discovered how two important proofreader proteins know where to look for errors during DNA replication and how they work together to signal the body’s repair mechanism.
Protein Found to Control Inflammatory Response
A new Northwestern Medicine study shows that a protein called POP1 prevents severe inflammation and, potentially, diseases caused by excessive inflammatory responses.
X-ray Laser Experiment Could Help in Designing Drugs for Brain Disorders
Scientists found that when two protein structures in the brain join up, they act as an amplifier for a slight increase in calcium concentration, triggering a gunshot-like release of neurotransmitters from one neuron to another.
Team Identifies Structure of Tumor-Suppressing Protein
An international group of researchers led by Carnegie Mellon University physicists Mathias Lösche and Frank Heinrich have established the structure of an important tumor suppressing protein, PTEN.
Why We’re Smarter Than Chickens
Toronto researchers have discovered that a single molecular event in our cells could hold the key to how we evolved to become the smartest animal on the planet.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!