Corporate Banner
Satellite Banner
Proteomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Onyx Pharmaceuticals Announces Cell Publication Demonstrating Selectivity of Immunoproteasome Inhibitor ONX 0914

Published: Friday, March 30, 2012
Last Updated: Friday, March 30, 2012
Bookmark and Share
Article describes the crystal structures of two forms of the proteasome found in mammalian cells.

Two forms are the constitutive proteasome, expressed by the majority of cells in the body, and the immunoproteasome, expressed in cells derived from the bone marrow, including T-cells and B-cells, two types of white blood cells.

In addition, this work includes structural analysis of the binding of ONX 0914, a selective inhibitor of the immunoproteasome being developed by Onyx, to proteasome active sites. These findings demonstrate the selectivity of ONX 0914, Onyx's proprietary compound, and support the rational design of new immunoproteasome-specific and dual-targeting inhibitors for the potential treatment of autoimmune disorders and cancer. The article is titled "Immuno- and Constitutive Proteasome Crystal Structures Reveal Differences in Substrate and Inhibitor Specificity."

"This research demonstrates the molecular basis of the selectivity of ONX 0914 for the immunoproteasome and highlights its potential as a treatment for autoimmune disorders, such as rheumatoid arthritis and lupus. Selective inhibition of the immunoproteasome may provide anti-inflammatory activity while having a minimal effect on the proteasome in other tissues or on normal immune system function," said Christopher J. Kirk, Ph.D., Vice President of Research at Onyx Pharmaceuticals.

Authors included Drs. Eva Huber, Wolfgang Heinemeyer and Michael Groll of the Center for Integrated Protein Science at the Technical University in Munich, Germany; Drs. Michael Basler, Ricarda Schwab and Marcus Groettrup of the University of Constance in Konstanz, Germany; and Dr. Christopher Kirk of Onyx Pharmaceuticals where ONX 0914 is being developed.
About ONX 0914 ONX 0914, currently in preclinical development, is a highly selective immunoproteasome inhibitor with potential treatment applications in autoimmune disorders, such as rheumatoid arthritis, inflammatory bowel disease and lupus.

The proteasome is an intracellular complex present in most cells that mediates the degradation of intracellular proteins, including key components of pathways that contribute to cancer cell growth and immune signaling. It is a proven and validated target for therapeutic intervention in oncology, but the side effect profiles of existing inhibitors have restricted the potential of this target for therapeutic intervention in autoimmune diseases. While the majority of cell types in the body express the standard form of the proteasome called the constitutive proteasome, cells of the immune system express a unique form of the proteasome called the immunoproteasome. An immunoproteasome-specific inhibitor may have the potential to selectively target proteasome function in immune cells, with minimal effects on the proteasome in other cells.

ONX 0914 was specifically designed to be a potent inhibitor of the immunoproteasome with minimal cross-reactivity for the constitutive proteasome. Recent evidence suggests that the immunoproteasome regulates the production of several inflammatory cytokines, including Tumor Necrosis Factor-a (TNF-a), Interleukin-6 (IL-6), IL-17, and IL-23. In preclinical models of rheumatoid arthritis and lupus, ONX 0914 blocked progression of these diseases and was generally well-tolerated. Preclinical studies are underway to evaluate the potential of ONX 0914 in the treatment of a range of autoimmune disorders.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More than 4,900+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Liquid Biopsies: Miracle Diagnostic or Next New Fad?
Thanks to the development of highly specific gene-amplification and sequencing technologies liquid biopsies access more biomarkers relevant to more cancers than ever before.
Uncovering Rhinovirus C Structure
Researchers have determined the structure of rhinovirus C. Their findings may aid the development of antiviral therapies and vaccines.
New Centre Offers Ultra-Speed Protein Analysis
UW-Madison researchers to establish development centre for next-gen protein measurement technologies.
Protein Nanocages Could Improve Drug Design and Delivery
HHMI scientists have designed and built 10 large protein icosahedra that are similar to viral capsids that carry viral DNA.
Virus Inspired Cell Cargo Ships
Virus-inspired container design may lead to cell cargo ships following construction of ten large, two-component, icosahedral protein complexes.
Protein Reinforces Growth of Damaged Muscles
Biologists have found a protein involved in stem cells that bolsters damaged muscle tissue growth - potential for muscle degeneration treatments.
Structure of Cold Virus Solved
Researchers have identified the structure of an elusive cold virus linked to child asthma and respiratory infections, providing the foundation for treating the virus.
New Protein Model Could Accelerate Drug Development
Stony Brook-led international research team creates ultra-fast approach to model protein interactions.
Researchers Can Control Genes Involved in Cancer
A new way to control the activity of a protein, that is often upregulated in cancer, has been discovered by Moffitt researchers through monoubiquitination mechanism.
Mitochondrial Role in Metastatic Cancer
Researchers have manipulated proteins, sourced from tumour cells, that are essential for maintaining tumour cells and in doing so, have significantly reduced the ability of cancer cells.
Scroll Up
Scroll Down
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,900+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!