Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Autism Gene Screen Highlights Protein Network for Howard Hughes Medical Institute Scientists

Published: Thursday, April 05, 2012
Last Updated: Thursday, April 05, 2012
Bookmark and Share
Over the past decade, scientists have added many gene mutations to the list of potential risk factors for autism spectrum disorders -- but researchers still lack a definitive explanation of autism’s cause.

Now, a chance finding from the University of Washington’s Jay Shendure and Howard Hughes Medical Institute (HHMI) investigator Evan Eichler gives an important clue to the puzzle.

In their study of more than 200 families, 39 percent of the 125 most severe mutations identified in patients with autism affected proteins that work together in one large interconnected network. Members of this network control a variety of fundamental developmental processes, such as whether a gene is turned on or off by changing the large-scale packaging of DNA, a process called chromatin remodeling.

Eichler’s team published its results on April 4, 2012, in the journal Nature. Two other research teams, one at Yale Medical School that included Matthew State and HHMI investigator Richard Lifton, and a second led by Mark Daly at Harvard Medical School, also published papers in the same issue of Nature that provide new insights into the genetic underpinnings of autism spectrum disorders.

“I think we’ve stumbled on a network that could be really important,” says Evan Eichler. “Other studies have hit on some of these genes one at a time, but I was surprised to see so many of them related as part of a highly interconnected set of proteins.”

Autism spectrum disorders, a set neurodevelopmental disorders characterized by impaired communication and social skills, affects more than one percent of children in the U.S., according to the latest numbers released by the Centers for Disease Control and Prevention. Previous studies on autism have concluded that genetic mutations present at birth are responsible for the disorder, but few cases have been explained in full by specific genetic mutations. “There is good evidence that mutations in as many as two dozen different genes can contribute to autism, but hundreds of other genes have also been suggested to be involved,” Eichler noted.

In their latest search for gene mutations linked to autism, Eichler and his colleagues relied on the Simons Simplex Collection, a collection of genetic samples from families in which only one member has the disorder. The presumption is that in these cases there will be enrichment for sporadic mutations in one of the parents’ egg or sperm cells that causes autism, rather than a mutation that a parent carries in all the cells of his or her body. “These sporadic mutations might explain about 25 percent of autism cases,” Eichler says, “although that’s just a guess.” By comparing the genetics of the parents, who don’t have autism, and the child who does, researchers can spot genetic differences and narrow down the list of mutations that could be responsible for the disorder in that individual.

Eichler’s team looked at the exomes—the full set of all protein-coding genes—from 209 such families and found more than 250 mutations carried by autistic children but not by their parents. Many of these were likely benign, but some of the mutations had been linked to autism or related genetic disorders in the past and others were strong new candidates. Only a handful were seen in more than one patient, but when the researchers started sorting through the list, Brian O’Roak, a postdoctoral fellow in Eichler’s lab, noticed that many were mutations affecting proteins in a related network.

“At first, I was skeptical that this was important,” says Eichler. “You can find connections between all sorts of proteins if you look hard enough. But we went back and sequenced the exomes of 50 unaffected siblings.” None of the unaffected siblings had mutations in the network.

Thirty-nine percent of the mutations on Eichler’s original list were mutations in genes that coded for proteins in the network, which he calls the βcatenin/chromatin-remodeling protein network. “Understanding how the mutations affect cells will require further experiments,” says Eichler, “but converging on a network is a step forward in the field of autism genetics.”

“If a list of genes just keeps growing and growing, it becomes very daunting and becomes harder to make any sense of,” he says. “But here we have converged on a pathway that helps to make some sense of that list.”

In addition to highlighting the network’s potential role in autism, Eichler’s team also studied whether the sporadic mutations they found in children came from mutations in a father’s DNA or a mother’s DNA. Eighty percent of the new mutations, they found—both those linked to autism and those seen in unaffected siblings—came from a father’s DNA. The high level of sporadic mutations inherited from fathers could help explain why autism has been associated with older dads.

“There are many mutations outside the network that are still linked to autism, and many mutations still to be discovered. Future genetic screens—that include regulatory DNA in addition to protein-coding sequences, for example—will likely reveal these additional mutations,” Eichler says.

“Despite finding this link between many mutations, I think autism is really an umbrella term for many disorders,” he says. “There are probably going to turn out to be many molecular flavors of autism which might be distinguished only at the level of genotype.”

Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,200+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Protein Nanocages Could Improve Drug Design and Delivery
HHMI scientists have designed and built 10 large protein icosahedra that are similar to viral capsids that carry viral DNA.
Monday, July 25, 2016
Spontaneous Mutations Play a Key Role in Congenital Heart Disease
New research shows that about 10 percent of these defects are caused by genetic mutations that are absent in the parents of affected children.
Monday, May 13, 2013
A New View of Transcription Initiation
Reading the human genome.
Monday, March 04, 2013
Search for Epigenetic Decoder in Brain Cells Leads Scientists to Rett Syndrome
New analysis suggests that MeCP2 recognizes 5hmC in the brain and facilitates activation of the genes.
Monday, December 31, 2012
HHMI’s Robert Lefkowitz Awarded 2012 Nobel Prize in Chemistry
Robert Lefkowitz and Brian K. Kobilka are the recipients of the 2012 Nobel Prize in Chemistry for studies of G-protein coupled receptors.
Thursday, October 11, 2012
Protein-Folding Game Taps Power of Worldwide Audience to Solve Difficult Puzzles
Extended efforts could pay off in the design of new proteins that help fight disease, sequester carbon, or clean up the environment.
Monday, August 09, 2010
Mutations in Different Cells Cooperate to Set the Stage for Cancer
HHMI researchers have shown that distinct cancer-causing mutations in neighboring cells can cooperate to produce tumors.
Friday, January 15, 2010
Scientists Identify New Genetic Culprit for Intellectual Disability
HHMI researchers identified a genetic mutation that plays a role in intellectual disability.
Monday, December 14, 2009
Sticklebacks Hone Defenses through Small DNA Deletions
A single genetic adjustment is enough to help a small fish make a big change, HHMI researchers find.
Friday, December 11, 2009
Studies Begin to Shape New Image of DNA
Researchers to develop a new picture of DNA that shows the molecule’s more dynamic side, which is capable of morphing into a large number of complex shapes.
Monday, November 09, 2009
Diagnosis Emerges from Complete Sequencing of Patient's Genes
HHMI researchers have identified a gene mutation that was responsible for the patient’s disease, but had not been suspected based on clinical observations.
Wednesday, October 28, 2009
Diagnosis Emerges from Complete Sequencing of Patient's Genes
Howard researchers used high-throughput DNA sequencing technology to identify a gene mutation that was responsible for the patient’s disease.
Tuesday, October 20, 2009
A Proliferation of Amyloid Arrangements
New research shows that variations in each fibril-forming protein’s arrangements may represent a protein-based system of inheritance between cells that parallels the genetic code.
Tuesday, August 25, 2009
Study Pinpoints Genetic Drivers of Lung Cancer’s Spread
Howard Hughes Medical Institute investigator find that lung cancer uses to seed deadly new tumors in the brain, bone marrow, and other organs.
Friday, July 03, 2009
New Strategy Reveals Targets for MicroRNA Gene Regulation
Researchers use HITS-CLIP technique to map the binding points of scores of different microRNAs throughout a genome in living mouse or human tissue.
Friday, June 19, 2009
Scientific News
Rare Immunodeficiency Yields Unexpected Insights
Scientists uncover previously unknown gene mutation revealing the role of a key molecule involved in immune cell development.
Tumor Markers Reveal Lethality Of Bladder Cancers
Researchers found that detection of certain tumor cells in early stage cancers helps identify high-risk cancers.
IU Research Reveals Link between Molecular Mechanisms in Prostate Cancer and Ewing's sarcoma
Researchers at IU have suggested that the molecular mechanism that triggers the rare disease Ewing's sarcoma could act as a potential new direction for the treatment of more than half of patients with prostate cancer.
Smartphone Laboratory Detects Cancer
Researchers develop low-cost, portable laboratory on a smartphonecapable of analysing multiple samples simultaneously.
RNA-Binding Proteins Role in ALS Revealed
Researchers describe how damage to RNA-binding protein contributes to ALS, isolating a possible therapeutic target.
Advances in Alzheimer’s Research
Researchers show how a diseased vertebrate brain can naturally react to Alzheimer’s pathology by forming more neurons.
Study Finds Key Regulator in Pulmonary Fibrosis
Researchers identify an enzyme that could open the way to therpies for chronic fatal lung disease.
NIH Study Determines Key Differences between Allergic and Non-Allergic Dust Mite Proteins
Researchers at NIH have uncovered factors that lead to the development of dust mite allergy and assist in the design of better allergy therapies.
Integrated Omics Analysis
Studying multi-omics promises to give a more holistic picture of the organism and its place in its ecosystem, however despite the complexities involved those within the field are optimistic.
Alzheimer’s-Linked Protein May Play Role in Schizophrenia
Researchers suggests a protein linked to cognitive decline in Alzheimer's also plays a role in genetic predisposition to schizophrenia.
Scroll Up
Scroll Down
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,200+ scientific videos