Corporate Banner
Satellite Banner
Proteomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Cell Death Mystery Yields New Suspect for Cancer Drug Development

Published: Friday, September 14, 2012
Last Updated: Friday, September 14, 2012
Bookmark and Share
A mysterious form of cell death, coded in proteins and enzymes, led to a discovery by UNC researchers uncovering a prime suspect for new cancer drug development.

A mysterious form of cell death, coded in proteins and enzymes, led to a discovery by UNC researchers uncovering a prime suspect for new cancer drug development.

CIB1 is a protein discovered in the lab of Leslie Parise, PhD, professor and chair of the Department of Biochemistry at the University of North Carolina School of Medicine.  The small calcium binding protein is found in all kinds of cells.

Cassandra Moran, DO, was a pediatric oncology fellow at UNC prior to accepting a faculty position at Duke University. She is interested in neuroblastoma, a deadly form of childhood brain cancer.  While working in the Parise lab at UNC as a resident, she found that decreasing CIB1 in neuroblastoma cells caused cell death.

Cancer is a disease of uncontrolled cell growth, so the ability to cause cancer cell death in the lab is exciting to researchers – but the UNC team couldn’t figure out how it was happening.

Tina Leisner, PhD, a UNC research associate in biochemistry, picked up where Dr. Moran left off when she returned to her clinical training.

“It was a mystery how loss of CIB1 was causing cell death. We knew that it wasn’t the most common mechanism for programmed cell death, called apoptosis, which occurs when enzymes called caspases become activated, leading to the destruction of cellular DNA.  These cells were not activating caspases, yet they were dying.   It was fascinating, but frustrating at the same time,” said Leisner.

What Dr. Leisner and her colleagues found, in the end, is that CIB1 is a master regulator of two pathways that cancer cells use to avoid normal mechanisms for programmed cell death.  These two pathways, researchers believe, create “alternate routes” for cell survival and proliferation that may help cancer cells outsmart drug therapy.  When one pathway is blocked, the other still sends signals downstream to cause cancer cell survival.

“What we eventually discovered is that CIB1 sits on top of two cell survival pathways, called PI3K/AKT and MEK/ERK. When we knock out CIB1, both pathways grind to a halt.  Cells lose AKT signaling, causing another enzyme called GAPDH to accumulate in the cell’s nucleus.Cells also lose ERK signaling, which together with GAPDH accumulation in the nucleus cause neuroblastoma cell death.  In the language of people who aren’t biochemists, knocking out CIB1 cuts off the escape routes for the cell signals that cause uncontrolled growth, making CIB1 a very promising drug target,” said Dr. Parise.

This multi-pathway action is key to developing more effective drugs.  Despite the approval of several targeted therapies in recent years, many cancers eventually become resistant to therapy.

“What is even more exciting,” Leisner adds, “is that it works in completely different types of cancer cells.  We successfully replicated the neuroblastoma findings in triple-negative breast cancer cells, meaning that new drugs targeted to CIB1 might work very broadly.”

The team’s findings were published in the journal Oncogene.  In addition to Drs. Leisner, Moran and Parise, Stephen P. Holly, PhD, contributed to the research.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Signaling Molecule Regulates Release of the Hunger Hormone Ghrelin
Researchers at UT Southwestern have identified that the blocking release of the hormone ghrelin may mediate low blood sugar effect in children taking beta blockers.
Telomere Replenishment in Real Time
Researchers have visualised the process of telomere attachment to chromosomes through single-molecule imaging.
New Inflammatory Disease Discovered
NIH researchers have discovered a rare and potentially deadly disease - otulipenia - the mostly affects children.
World's Most In-Depth Study to Detect Alzheimer's Disease
A multisite team will see the most thorough and vigorous testing for Alzheimer's ever performed on volunteers.
Zika Proteins Responsible for Microcephaly Identified
Researchers have undertaken the first study to examine Zika infection in human neural stem cells from second-trimester fetuses.
Pinpointing Key Influenza-Fighting Immune Trigger
Immunologists have identified the protein trigger that recognises influenza virus infection in cells and triggers their death.
Uncovering Constructor Proteins
Scientists have discovered a new bacterial cell wall builder that could be a target for antibiotic development.
Studying Protein, Synapse Interactions
New research identifies, for the first time, the role of certain proteins in synapse opperation and function.
Biomarker Breakthrough Could Improve Parkinson’s Treatment
A new method of tracking Parkinson's progression could aid evaluation of new and experimental treatments to slow or stop the disease.
PARP Proteins Explore Therapeutic Targets in Cancer
Researchers at UTSW have identified a previously unknown role of a certain class of proteins that opens the door to explore therapeutic targets in cancer and other disease.
Scroll Up
Scroll Down
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!