Corporate Banner
Satellite Banner
Proteomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

RUB Researchers Clarify Catalysis Mechanism of Cell Growth Protein Ras

Published: Thursday, September 20, 2012
Last Updated: Thursday, September 20, 2012
Bookmark and Share
PNAS: proteins bring tension to the phosphate chain.

Proteins accelerate certain chemical reactions in cells by several orders of magnitude. The molecular mechanism by which the Ras protein accelerates the cleavage of the molecule GTP and thus slows cell growth is described by biophysicists at the Ruhr-Universität Bochum led by Prof. Dr. Klaus Gerwert in the Online Early Edition of the journal PNAS. Using a combination of infrared spectroscopy and computer simulations, they showed that Ras puts a phosphate chain under tension to such an extent that a phosphate group can very easily detach - the brake for cell growth. Mutated Ras is involved in tumour formation, because this reaction slows down and the brake for cell growth fails. “Our findings could help to develop small molecules that restore the Ras proteins to the right speed”, says Prof. Gerwert. “Such molecules would then be interesting for molecular cancer therapy.”

On/off: the Ras code

The Ras protein switches the cell growth off by detaching a phosphate group from the small bound guanosine triphosphate, GTP for short. GTP has three interlinked phosphate groups. If it is present in water, the third phosphate group can split off spontaneously - even without the help of the protein Ras. This process is very slow though. Ras accelerates the splitting by a magnitude of five, a second protein, called GAP, by a further magnitude of five. What causes this acceleration has now been found out by the Bochum team.

How Ras spans the phosphate chain

Ras brings the chain of three phosphate groups at the GTP into a certain shape. It turns the third and second phosphate group to each other so that the chain is tensioned. “Like winding up a spring in a toy car by turning a screw”, explains Prof. Gerwert. “Ras is the screw, the phosphate groups form the spring.” The protein GAP tensions the spring further by also turning the first phosphate group against the second. In this way, the GTP gets into such a high-energy state that the third phosphate group can easily detach from the chain - like when the toy car drives off spontaneously after winding up the spring.

Infrared spectroscopy: high resolution, but only to be interpreted indirectly

The results were obtained by the Bochum researchers using the time-resolved fourier transform infrared spectroscopy (FTIR) developed at the Institute of Biophysics. With this technique, the scientists track reactions and interactions of proteins with high spatial and temporal resolution; much more precisely than using a microscope. “However, the spectroscopy does not deliver such nice pictures as a microscope, but only very complex infrared spectra”, explains PD Dr. Carsten Kötting. “Like a secret code that has to be deciphered.”

Quantum chemical simulations

To this end, Till Rudack simulated the protein responses on modern computing clusters and calculated the corresponding infrared spectra. Due to the enormous computational effort, large molecules such as a complete protein cannot currently be reliably described using these so-called quantum mechanical simulations. Therefore, the researchers limited their analysis to GTP and the part of the Ras or GAP protein that interacts directly with GTP. They described the rest of the proteins with a less elaborate molecular dynamics simulation. “When bringing together all the different simulations, it is easy to be led astray”, says Till Rudack. “Therefore you have to check the quality of the results by comparing the simulated with the measured infrared spectra.” If the spectra obtained with both techniques match, the structure of proteins can be determined to an accuracy of a millionth of a micrometre. This was the case in the Bochum study.

Potential uses for cancer therapy

Molecular cancer therapy is already used successfully with diseases such as chronic myeloid leukaemia (CLM) in the form of the drug Gleevec. Molecules with a similar effect against the mutated Ras protein have not yet been found. “Since we are now able to investigate the reactions of the Ras protein with significantly better resolution, new hope is forming that it will be possible to defuse the mutated molecule using drugs such as Gleevec and restore the rhythm of the cell” says Gerwert.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,900+ scientific posters on ePosters
  • More than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Top 10 Life Science Innovations of 2016
2016 has seen the release of some truly innovative products. To help you digest these developments, The Scientist have listed their top picks for the year.
Largest Resource of Protein-Protein Interactions
Researchers have developed the largest ever database of protein-protein interactions.
Bright Red Fluorescent Protein Created
Scientists have created a bright red, fluorescent protein that could be used to track essential cellular processes.
Protein Self-Regulates Abundance
Researchers have uncovered how a protein, that plays a crucial role in embryonic stem cell renewal, is regulated.
'Lab on the Skin' for Sweat Analysis
Northwestern University researchers develop a low-cost wearable electronic device that collects and analyzes sweat for health monitoring.
Building Better Nanodiscs
Researchers have improved upon the design of nanodiscs that provide an unprecedented view of viral infection.
Breast Cancer Cells Starve for Cystine
Depriving triple negative breast cancer, a treatment-resistant form of breast cancer, of cystine results in cancer cell death.
Novel Urine Test to Predict High-Risk Cervical Cancer
Preliminary studies affirm accuracy and potential cost savings to screen for virus-caused malignancy.
Protein-Folding Gene Helps Heal Wounds
Researchers identified a protein that dramatically accelerates wound healing in animal models.
Crop Yield Gets Boost with Modified Genes
Researchers increase plant proteins that result in more efficient use of sunlight.
Scroll Up
Scroll Down
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!