Corporate Banner
Satellite Banner
Proteomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

BGI Tech Develops Whole Exome Sequencing Analysis of FFPE DNA Samples to Accelerate Biomedical Research

Published: Friday, September 21, 2012
Last Updated: Friday, September 21, 2012
Bookmark and Share
Achieving optimization of FFPE DNA library construction with DNA down to 200 ng.

BGI Tech Solutions Co., Ltd., a subsidiary company of BGI, announced today that they have achieved whole exome sequencing analysis of total degraded DNA as low as 200 ng from formalin fixed paraffin embedded (FFPE) samples. This advancement enables researchers to efficiently uncover the genetic information from FFPE disease samples such as cancers and infectious diseases, with the advantages of high reliability, accuracy and fast turnaround time.

FFPE samples are the most common biological materials for disease diagnoses and clinical studies. Especially in cancer research, millions of FFPE archival cancer tissue samples provide an enormous and invaluable repository of information, which hold a wealth of data for the discovery of biomarkers, drug development as well as diseases diagnosis and treatment.

However, during the FFPE sample preparation and storage process, the effect of formaldehyde on nucleic acids is detrimental, which can induce modification of nucleotide molecules, such as DNA damage, DNA-protein cross-links (DPC), among others. This may lay problems for researchers to get enough high-quality DNA from these FFPE samples to comprehensively explore the genetic characteristics of diseases, especially for some rare tumors.

FFPE samples are a unique sample type with a lot of challenges, and researchers from BGI Tech have optimized the DNA extraction, library construction and sequencing pipelines of FFPE DNA samples. At present, DNA as low as 200 ng from FFPE samples can be used for whole exome sequencing. To insure the accuracy and quality of sequencing, researchers evaluated the FFPE DNA sequencing results and demonstrated that FFPE exome sequencing could maintain the equivalent accuracy and reliability with the normal DNA sample sequencing.

It is reported that ~85% of genetic diseases are related with exome variations. Whole exome sequencing is a robust innovative technique that selectively sequences the coding regions of a genome and can be used to identify novel genes associated with rare and common diseases such as cancer, diabetes, and obesity. However, currently traditional exome sequencing has higher requirement for the quality and the amount of input of DNA samples.

Zhao Lin, Director of Products R&D Department of BGI Tech, said, “Our whole exome sequencing technology with FFPE DNA sample is an important step toward better and quickly decoding the genetic information underlying FFPE diseases samples. I believe this advancement will strengthen the confidence of researchers in pharmaceutical and disease areas, especially when samples are limited. In order to accelerate biomedical research, we expect to conduct more FFPE sequencing projects with collaborators worldwide.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 4,000+ scientific posters on ePosters
  • More than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Protein-Based “Cancer Signature” Uncovered
Researchers investigated the expression of ribosomal proteins in human tissues and discovered a cancer type specific signature which could be used to predict the progression of the disease.
Predicting Leukaemia Development in Cancer Patients
Biomarker may predict which formerly treated cancer patients will develop highly fatal form of leukemia.
‘NoBody,’ a Microprotein On a Mission
Researchers identify over 400 microproteins encoded in the human genome, one of which clears unneeded genetic material inside cells.
Top 10 Life Science Innovations of 2016
2016 has seen the release of some truly innovative products. To help you digest these developments, The Scientist have listed their top picks for the year.
Largest Resource of Protein-Protein Interactions
Researchers have developed the largest ever database of protein-protein interactions.
Bright Red Fluorescent Protein Created
Scientists have created a bright red, fluorescent protein that could be used to track essential cellular processes.
Protein Self-Regulates Abundance
Researchers have uncovered how a protein, that plays a crucial role in embryonic stem cell renewal, is regulated.
'Lab on the Skin' for Sweat Analysis
Northwestern University researchers develop a low-cost wearable electronic device that collects and analyzes sweat for health monitoring.
Building Better Nanodiscs
Researchers have improved upon the design of nanodiscs that provide an unprecedented view of viral infection.
Breast Cancer Cells Starve for Cystine
Depriving triple negative breast cancer, a treatment-resistant form of breast cancer, of cystine results in cancer cell death.
Scroll Up
Scroll Down
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
4,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!