Corporate Banner
Satellite Banner
Proteomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Hundreds of Biochemical Analyses on a Single Device

Published: Wednesday, September 26, 2012
Last Updated: Wednesday, September 26, 2012
Bookmark and Share
Scientists at EPFL and the University of Geneva have developed a microfluidic device smaller than a domino that can simultaneously measure up to 768 biomolecular interactions.

Inside our cells, molecules are constantly binding and separating from one another. It’s this game of constant flux that drives gene expression asides essentially every other biological process.

Understanding the specific details of how these interactions take place is thus crucial to our overall understanding of the fundamental mechanisms of living organisms. There are millions of possible combinations of molecules, however; determining all of them would be a Herculean task. Various tools have been developed to measure the degree of affinity between a strand of DNA and its transcription factor. They provide an indication of the strength of the affinity between them.

“Commercial” devices, however, have one main drawback: many preliminary manipulations are necessary before an experiment can be carried out, and even then, the experiment can only focus on a dozen interactions at a time.

Microns-wide channels

As part of his doctoral research at the California Institute of Technology (Caltech), Sebastian Maerkl designed a device that he named “MITOMI” – a small device containing hundreds of microfluidic channels equipped with pneumatic valves. This week Maerkl, who is now an assistant professor in EPFL’s Bioengineering Institute, is publishing an article describing the next step in the evolution of the device in Proceedings of the National Academy of Sciences (PNAS). The new version, “k-MITOMI,” was developed in the context of the SystemsX.ch RTD DynamiX in cooperation with the University of Geneva.

This microfluidic device has 768 chambers, each one with a valve that allows DNA and transcription factors to interact in a very carefully controlled manner. “In traditional methods, we generally manage to determine if an interaction takes place or not, and then we restart the experiment with another gene or another transcription factor,” Maerkl explains. “Our device goes much further, because it allows us to measure the affinity and kinetics of the interaction.”

The strength of the device lies in a sort of “push-button” in its microreactors. A protein substrate is immobilized on the device; above it circulates a solution containing DNA moelcules. The push-button is activated at regular intervals of a few milliseconds, trapping protein-DNA complexes that form on the surface of the device. “Then we close the lid, and fluorescence reveals the exact number of bound molecules,” explains Maerkl. “We can also observe how long these molecules remain bound.”

In addition to providing quantitative kinetic information, the k-MITOMI device can work in a “massively parallel” manner. Each of the 768 independent chambers can simultaneously analyze different molecule pairs. It can also be used to synthesize proteins in vitro, with a massive reduction in time and number of manipulations compared to the traditional method, which involves producing proteins inside a living organism such as a bacterium, purifying, and putting them in contact with the genes to be studied.

“The number of protein-protein and protein-DNA interactions that remain to be characterized is phenomenal. Our device not only allows us to accelerate the acquisition of this information, which is crucial to our understanding of living organisms, but it also meets a need for the production of specific proteins,” adds Maerkl.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Breath Test For Detecting Head And Neck Cancer
A portable device can detect the presence of certain types of cancer in people's breath.
Monday, April 13, 2015
Scientific News
Lemon Juice and Human Norovirus
Citric acid may prevent the highly contagious norovirus from infecting humans, scientists discovered from the German Cancer Research Center.
Signature of Microbiomes Linked to Schizophrenia
Studying microbiomes in throat may help identify causes and treatments of brain disorder.
Structural Discoveries Could Aid in Better Drug Design
Scientists have uncovered the structural details of how some proteins interact to turn two different signals into a single integrated output.
Protein Found to Play a Key Role in Blocking Pathogen Survival
Calprotectin fends off microbial invaders by limiting access to iron, an important nutrient.
Study Identifies the Off Switch for Biofilm Formation
New discovery could help prevent the formation of infectious bacterial films on hospital equipment.
How DNA ‘Proofreader’ Proteins Pick and Edit Their Reading Material
Researchers from North Carolina State University and the University of North Carolina at Chapel Hill have discovered how two important proofreader proteins know where to look for errors during DNA replication and how they work together to signal the body’s repair mechanism.
Protein Found to Control Inflammatory Response
A new Northwestern Medicine study shows that a protein called POP1 prevents severe inflammation and, potentially, diseases caused by excessive inflammatory responses.
X-ray Laser Experiment Could Help in Designing Drugs for Brain Disorders
Scientists found that when two protein structures in the brain join up, they act as an amplifier for a slight increase in calcium concentration, triggering a gunshot-like release of neurotransmitters from one neuron to another.
Team Identifies Structure of Tumor-Suppressing Protein
An international group of researchers led by Carnegie Mellon University physicists Mathias Lösche and Frank Heinrich have established the structure of an important tumor suppressing protein, PTEN.
Why We’re Smarter Than Chickens
Toronto researchers have discovered that a single molecular event in our cells could hold the key to how we evolved to become the smartest animal on the planet.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!