Corporate Banner
Satellite Banner
Proteomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Major Cancer Protein Amplifies Global Gene Expression, NIH Study Finds

Published: Monday, October 01, 2012
Last Updated: Sunday, September 30, 2012
Bookmark and Share
NIH study found that MYC protein boosts the expression of genes that are already turned on.

Scientists may have discovered why a protein called MYC can provoke a variety of cancers. Like many proteins associated with cancer, MYC helps regulate cell growth.

A study carried out by researchers at the National Institutes of Health and colleagues found that, unlike many other cell growth regulators, MYC does not turn genes on or off, but instead boosts the expression of genes that are already turned on.

These findings, which will be published in Cell on Sept. 28, could lead to new therapeutic strategies for some cancers.

"We carried out a highly sophisticated analysis of MYC activity in cells, but came away with a simple rule. MYC is not a power switch but a universal amplifier," said co-lead study author Keji Zhao, Ph.D., director of the Systems Biology Center at the NIH's National Heart, Lung, and Blood Institute (NHLBI).

Zhao continued, "This discovery offers a unifying idea of how and why abnormal levels of MYC are found in so many different cancer types, such as breast cancer, lung cancer, and several blood cancers."

"MYC is much like the volume control of a music player," added co-lead David Levens, M.D., Ph.D., a senior investigator in the Laboratory of Pathology at the National Cancer Institute (NCI), also part of NIH.

Levens continued, "If you're listening to opera, for example, adding more MYC will make the opera louder, but it won't change the program to rap. And if you have only silence, MYC will just give you more silence."

Both researchers noted that this new understanding of MYC function could influence future treatment efforts for MYC-associated tumors.

They suggest that trying to limit MYC activity, or turning down the volume just the right amount, would be a better strategy than using targeted chemotherapy to try to eliminate all MYC activity.

MYC aids in cell activation, a process in which cells mature and divide quickly. During an immune response, for example, white blood cells are activated to help fight infections.

If activation isn't properly regulated, then cells can start growing out of control and result in cancer.

Researchers have known that abnormally high levels of MYC can lead to cancer, but until now, no one had been able to explain how it can lead to so many different cancers.

Zhao, Levens, and their colleagues used a specially designed fluorescent protein that allowed them to track MYC in white blood cells in a lab dish.

They chose white blood cells, specifically B cells and T cells that fight infections, because they are frequently affected by abnormal MYC and can transform into lymphoma and myeloma cells.

The team exposed the B and T cells to foreign toxins to stimulate an immune response and activate the fluorescent MYC.

The researchers could then examine the cells at different time points and see which genes the MYC proteins seemed to affect.

The analysis revealed that MYC didn't prefer any specific type of gene. Instead, MYC proteins were present at nearly every gene that was already expressed, or turned on.

The researchers also noticed that the amount of MYC at each expressed gene correlated with how active that gene was prior to immune stimulation.

The more active the gene, the more MYC gathered there. MYC appeared to amplify productivity relative to the initial expression levels where it gave a small boost to genes with low activity and a big boost to genes with high activity.

The researchers validated the idea of MYC as a universal amplifier by developing a set of B cells that did not produce functional MYC.

When they were stimulated, the total cellular amount of RNA - an indicator of how much protein is being made - did not rise. When normal B cells were activated, the total cellular RNA did rise.

The research team then conducted the same analysis in embryonic stem cells and got similar results.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 4,000+ scientific posters on ePosters
  • More than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Protein-Folding Gene Helps Heal Wounds
Researchers identified a protein that dramatically accelerates wound healing in animal models.
Wednesday, November 23, 2016
Genetic Markers Predict Malaria Treatment Failure
By comparing 297 parasite genomes to a reference malaria parasite genome, researchers have identified two genetic markers that are strongly associated with the parasites’ ability to resist piperaquine.
Monday, November 07, 2016
NIH Researchers Unveil New Wound-Healing Role for Protein-Folding Gene in Mice
The study found that topical treatment of an Hsp60-containing gel dramatically accelerates wound closure in a diabetic mouse model.
Friday, October 28, 2016
NIH Study Determines Key Differences between Allergic and Non-Allergic Dust Mite Proteins
Researchers at NIH have uncovered factors that lead to the development of dust mite allergy and assist in the design of better allergy therapies.
Thursday, October 20, 2016
Detecting Bacterial Infections in Newborns
Researchers tested an alternative way to diagnose bacterial infections in infants—by analyzing RNA biosignatures from a small blood sample.
Wednesday, September 14, 2016
$12.4M Awarded to Neural Regeneration Projects
The National Institutes of Health will fund six projects to identify biological factors that influence neural regeneration.
Friday, September 02, 2016
Oxygen Can Impair Cancer Immunotherapy
Researchers have identified a mechanism within the lungs where anticancer immune resposnse is inhibited.
Friday, August 26, 2016
New Inflammatory Disease Discovered
NIH researchers have discovered a rare and potentially deadly disease - otulipenia - the mostly affects children.
Tuesday, August 23, 2016
How Parkinson’s Disease Alters Brain Activity Over Time
The NIH study provides a new tool for testing experimental medications aimed at alleviating symptoms and slowing the rate at which the diseases damage the brain.
Tuesday, August 16, 2016
Genetic Cause of Rare Pediatric Neuropathy Identified
NIH mouse study identifies the mechanism responsible for a rare form of pediatric neuropathy.
Thursday, August 04, 2016
Uncovering Rhinovirus C Structure
Researchers have determined the structure of rhinovirus C. Their findings may aid the development of antiviral therapies and vaccines.
Wednesday, July 27, 2016
Advancing Protein Visualization
Cryo-EM methods can determine structures of small proteins bound to potential drug candidates.
Friday, May 27, 2016
Study Finds Factors That May Influence Influenza Vaccine Effectiveness
Researchers at NIH have suggested that the long-held approach to predicting seasonal influenza vaccine effectiveness may need to be revisited.
Wednesday, April 20, 2016
Visualizing a Cancer Drug Target at Atomic Resolution
Using cryo-electron microscopy, researchers were able to view, in atomic detail, the binding of a potential small molecule drug to a key protein in cancer cells.
Wednesday, February 10, 2016
Genomic Signature Shared by Five Types of Cancer
National Institutes of Health researchers have identified a striking signature in tumor DNA that occurs in five different types of cancer.
Monday, February 08, 2016
Scientific News
Protein-Based “Cancer Signature” Uncovered
Researchers investigated the expression of ribosomal proteins in human tissues and discovered a cancer type specific signature which could be used to predict the progression of the disease.
Predicting Leukaemia Development in Cancer Patients
Biomarker may predict which formerly treated cancer patients will develop highly fatal form of leukemia.
‘NoBody,’ a Microprotein On a Mission
Researchers identify over 400 microproteins encoded in the human genome, one of which clears unneeded genetic material inside cells.
Top 10 Life Science Innovations of 2016
2016 has seen the release of some truly innovative products. To help you digest these developments, The Scientist have listed their top picks for the year.
Largest Resource of Protein-Protein Interactions
Researchers have developed the largest ever database of protein-protein interactions.
Bright Red Fluorescent Protein Created
Scientists have created a bright red, fluorescent protein that could be used to track essential cellular processes.
Protein Self-Regulates Abundance
Researchers have uncovered how a protein, that plays a crucial role in embryonic stem cell renewal, is regulated.
'Lab on the Skin' for Sweat Analysis
Northwestern University researchers develop a low-cost wearable electronic device that collects and analyzes sweat for health monitoring.
Building Better Nanodiscs
Researchers have improved upon the design of nanodiscs that provide an unprecedented view of viral infection.
Breast Cancer Cells Starve for Cystine
Depriving triple negative breast cancer, a treatment-resistant form of breast cancer, of cystine results in cancer cell death.
Scroll Up
Scroll Down
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
4,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!