Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

MIT Team Builds Most Complex Synthetic Biology Circuit Yet

Published: Monday, October 08, 2012
Last Updated: Monday, October 08, 2012
Bookmark and Share
New sensor can detect four different molecules, could be used to program cells to precisely monitor their environments.

Using genes as interchangeable parts, synthetic biologists design cellular circuits that can perform new functions, such as sensing environmental conditions. However, the complexity that can be achieved in such circuits has been limited by a critical bottleneck: the difficulty in assembling genetic components that don’t interfere with each other.

Unlike electronic circuits on a silicon chip, biological circuits inside a cell cannot be physically isolated from one another. “The cell is sort of a burrito. It has everything mixed together,” says Christopher Voigt, an associate professor of biological engineering at MIT.

Because all the cellular machinery for reading genes and synthesizing proteins is jumbled together, researchers have to be careful that proteins that control one part of their synthetic circuit don’t hinder other parts of the circuit.

Voigt and his students have now developed circuit components that don’t interfere with one another, allowing them to produce the most complex synthetic circuit ever built. The circuit, described in the Oct. 7 issue of Nature, integrates four sensors for different molecules. Such circuits could be used in cells to precisely monitor their environments and respond appropriately.

“It’s incredibly complex, stitching together all these pieces,” says Voigt, who is co-director of the Synthetic Biology Center at MIT. Larger circuits would require computer programs that Voigt and his students are now developing, which should allow them to combine hundreds of circuits in new and useful ways.

Lead author of the paper is MIT postdoc Tae Seok Moon. Other authors are MIT postdoc Chunbo Lou and Alvin Tamsir, a graduate student at the University of California at San Francisco.

Expanding the possibilities

Previously, Voigt has designed bacteria that can respond to light and capture photographic images, and others that can detect low oxygen levels and high cell density — both conditions often found in tumors. However, no matter the end result, most of his projects, and those of other synthetic biologists, use a small handful of known genetic parts. “We were just repackaging the same circuits over and over again,” Voigt says.

To expand the number of possible circuits, the researchers needed components that would not interfere with each other. They started out by studying the bacterium that causes salmonella, which has a cellular pathway that controls the injection of proteins into human cells. “It’s a very tightly regulated circuit, which is what makes it a good synthetic circuit,” Voigt says.

The pathway consists of three components: an activator, a promoter and a chaperone. A promoter is a region of DNA where proteins bind to initiate transcription of a gene. An activator is one such protein. Some activators also require a chaperone protein before they can bind to DNA to initiate transcription.

The researchers found 60 different versions of this pathway in other species of bacteria, and found that most of the proteins involved in each were different enough that they did not interfere with one another. However, there was a small amount of crosstalk between a few of the circuit components, so the researchers used an approach called directed evolution to reduce it. Directed evolution is a trial-and-error process that involves mutating a gene to create thousands of similar variants, then testing them for the desired trait. The best candidates are mutated and screened again, until the optimal gene is created.

Aindrila Mukhopadhyay, a staff scientist at Lawrence Berkeley National Laboratory, says the amount of troubleshooting the researchers did to create each functional module is impressive. “A lot of people are charmed by the idea of creating complex genetic circuits. This study provides valuable examples of the types of optimizations that they may have to do in order to accomplish such goals,” says Mukhopadhyay, who was not part of the research team.

Layered circuits

To design synthetic circuits so they can be layered together, their inputs and outputs must mesh. With an electrical circuit, the inputs and outputs are always electricity. With these biological circuits, the inputs and outputs are proteins that control the next circuit (either activators or chaperones).

These components could be useful for creating circuits that can sense a variety of environmental conditions. “If a cell needs to find the right microenvironment — glucose, pH, temperature and osmolarity [solute concentration] — individually they’re not very specific, but getting all four of those things really narrows it down,” Voigt says.

The researchers are now applying this work to create a sensor that will allow yeast in an industrial fermenter to monitor their own environment and adjust their output accordingly.

The research was funded by the U.S. Office of Naval Research and the National Institutes of Health.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Scientific News
A Cellular Symphony Responsible for Autoimmune Disease
Broad Institute researchers have used a novel approach to increase our understanding of the immune system as a whole.
Non-Disease Proteins Kill Brain Cells
Scientists at the forefront of cutting-edge research into neurodegenerative diseases such as Alzheimer’s and Parkinson’s have shown that the mere presence of protein aggregates may be as important as their form and identity in inducing cell death in brain tissue.
Closing the Loop on an HIV Escape Mechanism
Research team finds that protein motions regulate virus infectivity.
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Gut Microbes Signal to the Brain When They're Full
Don't have room for dessert? The bacteria in your gut may be telling you something.
Turning up the Tap on Microbes Leads to Better Protein Patenting
Mining millions of proteins could become faster and easier with a new technique that may also transform the enzyme-catalyst industry, according to University of California, Davis, researchers.
Exploring the Causes of Cancer
Queen's research to understand the regulation of a cell surface protein involved in cancer.
Measuring microRNAs in Blood to Speed Cancer Detection
A simple, ultrasensitive microRNA sensor holds promise for the design of new diagnostic strategies and, potentially, for the prognosis and treatment of pancreatic and other cancers.
Novel Proteins Linked to Huntington's Disease
University of Florida Health researchers have made a new discovery about Huntington's disease, showing that the gene that causes the fatal disorder makes an unexpected "cocktail" of mutant proteins that accumulate in the brain.
Enzyme Critical to Maintaining Telomere Length Discovered
New method expected to speed understanding of short telomere diseases and cancer.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos