Corporate Banner
Satellite Banner
Proteomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

'Cleaving' Protein Drives Tumor Growth

Published: Tuesday, October 16, 2012
Last Updated: Tuesday, October 16, 2012
Bookmark and Share
Researchers led have determined how a protein known as Trop2 drives the growth of tumor cells in prostate and other epithelial cancers.

This discovery is important because it may prove essential for creating new therapies that stop the growth of cancer, the researchers said. The study is featured on the cover of the journal Genes and Development.

The Trop2 protein is expressed on the surface of many types of epithelial cancer cells — cells that form tumors that grow in the skin and the inner and outer linings of organs — but little was known about the protein's role in the growth and proliferation of cancer cells. The UCLA researchers discovered that Trop2 controls those processes through a mechanism that leads to the protein being cleaved into two parts, one inside the cell and one outside. This Trop2 division promotes self-renewal of the cancer cells, resulting in tumor growth.

"Determining the mechanism of this protein is important for planning treatments that stop the growth of prostate cancer, but it is also overexpressed in so many other types of cancer that it might be a treatment target for many more patients beyond that population," said senior author Witte, director of the Broad Center and a professor in the department of microbiology, immunology, and molecular genetics at UCLA.

The finding may have a critical clinical impact, the researchers said, since preventing the cleavage of Trop2 by mutating those sites on the protein where it splits eliminates the protein's ability to promote tumor cell growth. Using this knowledge, they said, new therapy strategies can be developed that block Trop2 molecular signaling, thus stopping its ability to enhance tumor growth in a variety of epithelial malignancies, including prostate, colon, oral cavity, pancreatic and ovarian cancers, among others.

"The reason I became interested in Trop2 was that it is highly expressed in many epithelial cancers but no one knew precisely how the protein worked to promote the disease," said Stoyanova, the study's first author and a postdoctoral scholar in the department of microbiology, immunology and molecular genetics at UCLA.

Funding for the study was provided by the California Institute for Regenerative Medicine Training Grant (TG2-01169), the U.S. Department of Defense Prostate Cancer Research Program (PC110638) and the Howard Hughes Medical Institute.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More than 4,600+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Unveiling the Complexity of Mysterious Protein Folding
Imagine trying to reverse engineer a car when all you have is a finished product or a box full of parts — no instructions.
Wednesday, June 01, 2016
Cat Stem Cell Therapy Gives Humans Hope
By the time Bob the cat came to the UC Davis veterinary hospital, he had used up most of his nine lives.
Monday, February 08, 2016
Crowdfunding the Fight Against Cancer
From budding social causes to groundbreaking businesses to the next big band, crowdfunding has helped connect countless worthy projects with like-minded people willing to support their efforts, even in small ways. But could crowdfunding help fight cancer?
Monday, February 08, 2016
Clearest Ever Images of Enzyme that Plays Key Roles in Aging, Cancer
UCLA-led research on telomerase could lead to new strategies for treating disease
Monday, October 19, 2015
Crop Cure
Scientists in new center to use medical research techniques to help food crops withstand drought and climate change.
Friday, October 16, 2015
Industry-Sponsored Academic Inventions Spur Increased Innovation
Analysis questions assumption that corporate support skews science toward inventions that are less useful than those funded by the government or non-profit organizations.
Monday, March 24, 2014
Structure of Key Pain-Related Protein Unveiled
In a technical tour de force, scientists have determined, at near-atomic resolution, the structure of a protein that plays a central role in the perception of pain and heat.
Friday, December 06, 2013
Chemical Signature for Fast Form of Parkinson's Found
The physical decline experienced by Parkinson's disease patients eventually leads to disability and a lower quality of life.
Monday, November 25, 2013
New Insights into How Proteins Regulate Genes
Researchers have developed a new way to parse and understand how special proteins called "master regulators" read the genome, and consequently turn genes on and off.
Monday, October 21, 2013
Cell Growth Discovery Has Implications for Targeting Cancer
The way cells divide to form new cells is controlled in previously unsuspected ways.
Monday, October 21, 2013
Discovery Could Lead to Saliva Test for Pancreatic Cancer
The disease is typically diagnosed through an invasive and complicated biopsy.
Tuesday, October 15, 2013
Tuberculosis and Parkinson’s Disease Linked by Unique Protein
UCSF researchers seek way to boost protein to fight both diseases.
Wednesday, September 11, 2013
Effects of Parkinson’s Disease Mutation Reversed in Cells
UCSF study used chemical commonly found in anti-wrinkle cream.
Friday, August 23, 2013
Dentistry School Receives $5M to Study Saliva Biomarkers
Imagine having a sample of your saliva taken at the dentist's office, and then learning within minutes whether your risk for stomach cancer is higher than normal.
Thursday, August 15, 2013
Scientists Devise Innovative Method to Profile and Predict the Behavior of Proteins
A class of proteins that are made up of multiple, interlocking molecular components, enzymes perform a variety of tasks inside each cell.
Friday, August 09, 2013
Scientific News
ASMS 2016: Targeting Mass Spectrometry Tools for the Masses
The expanding application range of MS in life sciences, food, energy, and health sciences research was highlighted at this year's ASMS meeting in San Antonio, Texas.
Proteins in Blood of Heart Disease Patients May Predict Adverse Events
Nine-protein test shown superior to conventional assessments of risk.
Self-Assembling Protein Shell for Drug Delivery
Made-to-order nano-cages open possibilities of shipping cargo into living cells or fashioning small chemical reactors.
Molecular Map Provides Clues To Zinc-Related Diseases
Mapping the molecular structure where medicine goes to work is a crucial step toward drug discovery against deadly diseases.
Nanoprobe Enables Measurement of Protein Dynamics in Living Cells
Mass. General and Harvard researchers use device to measure how anesthetic affects levels of Alzheimer's-associated proteins.
Diagnosing Systemic Infections Quickly, Reliably
Team develop rapid and specific diagnostic assay that could help physicians decide within an hour whether a patient has a systemic infection and should be hospitalized for aggressive intervention therapy.
What Makes a Good Scientist?
It’s the journey, not just the destination that counts as a scientist when conducting research.
A New Tool Brings Personalized Medicine Closer
Scientists from EPFL and ETHZ have developed a powerful tool for exploring and determining the inherent biological differences between individuals, which overcomes a major hurdle for personalized medicine.
Blood Test That Detects Early Alzheimer’s Disease
A research team, led by Dr. Robert Nagele from Rowan University School of Osteopathic Medicine and Durin Technologies, Inc., has announced the development of a blood test that leverages the body’s immune response system to detect an early stage of Alzheimer’s disease – referred to as the mild cognitive impairment (MCI) stage – with unparalleled accuracy.
‘Missing Tooth’ Hydrogels Handle Hard-to-Deliver Drugs
Rice University’s custom hydrogel traps water-avoiding molecules for slow delivery.
Scroll Up
Scroll Down
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,600+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!