Corporate Banner
Satellite Banner
Proteomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

A New Glow for Electron Microscopy

Published: Monday, October 22, 2012
Last Updated: Monday, October 22, 2012
Bookmark and Share
Protein-labeling technique allows high-resolution visualization of molecules inside cells.

The glowing green molecule known as green fluorescent protein (GFP) has revolutionized molecular biology. When GFP is attached to a particular protein inside a cell, scientists can easily identify and locate it using fluorescence microscopy. However, GFP can’t be used with electron microscopy, which offers much higher resolution than fluorescence microscopy.

Chemists from MIT have now designed a GFP equivalent for electron microscopy — a tag that allows scientists to label and visualize proteins with unprecedented clarity.

“With things that may appear only a few pixels across by fluorescence microscopy — for example, a mitochondrion — you can’t make out any of the internal features. But with electron microscopy it’s very easy to discern the intricate internal structures,” says Jeff Martell, a graduate student in chemistry at MIT and lead author of a paper describing the new tag in the Oct. 21 online edition of Nature Biotechnology.

The new tag could help scientists pinpoint the locations of many cell proteins, providing new insight into those proteins’ functions, according to the researchers.

Improving on nature

Dubbed APEX, the new tag is similar to naturally occurring proteins that have been tried as imaging labels for electron microscopy. Horseradish peroxidase (HRP) is one commonly used tag, but it works only in a few compartments of a cell. Other recently developed tags work throughout a cell but are technically challenging to use because they require light to be shined on the sample and oxygen to be bubbled through it.

To improve on these methods, the researchers started with a protein similar to HRP, called ascorbate peroxidase (APX). APX is more versatile than HRP because it can function within a cell’s cytosol, in the main cavity of a cell.

Both HRP and APX belong to a class of enzymes called peroxidases, which remove an electron and a proton from other molecules in a process known as oxidation. Every peroxidase has different targets, and one of HRP’s main targets is a molecule called DAB, which when oxidized can be visualized with electron microscopy. The researchers genetically engineered APX so that it would also target DAB.

To use this new APEX tag (for “engineered APX”), the researchers deliver, into a living cell, a small ring of DNA containing the APEX gene joined to the gene for the protein they plan to image. The cell then produces the target protein, bound to the APEX protein.

Next, the researchers need to deliver DAB, which is not normally found in cells. This delivery takes place during the process of “fixing,” or stabilizing cells, which must be done before they can be imaged with electron microscopy.

When the APEX protein oxidizes DAB, it generates radicals that rapidly clump together into a tarlike polymer. That polymer can be detected through electron microscopy, allowing the researchers to pinpoint the location of the target protein.

A biological question resolved

To demonstrate the usefulness of their new tag, the researchers set out to resolve an open question regarding the location of a calcium channel protein discovered last year. Two research groups identified the protein and reported that it is located within mitochondria, but they had conflicting theories as to its precise location and orientation. Using the new imaging technique, the MIT-led team labeled the protein and determined that it is embedded in the inner mitochondrial membrane and faces into the innermost part of mitochondria, the mitochondrial matrix.

The team also showed that the new tag can label proteins throughout the cell — not only within mitochondria but also in the nucleus, the endoplasmic reticulum and the cytosol.

Martell and Alice Ting, the Ellen Swallow Richards Associate Professor of Chemistry at MIT and senior author of the Nature Biotechnology paper, invented the new technology. Other authors who helped to test the tag and explore biological applications are Mark Ellisman, Thomas Deerinck and Gina Sosinsky of the University of California at San Diego, Yasemin Sancak and Vamsi Mootha of Harvard Medical School, and Thomas Poulos of the University of California at Irvine.

Ting and Martell have filed for a patent on their imaging technology and are now working on making the APEX molecule more stable and better able to bind heme (an iron atom embedded in an organic compound), which is necessary for it to function properly.

The research was funded by the National Institutes of Health.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Synthetic Antibody Detects Proteins
Research could lead to nanosensors that recognize fibrinogen, insulin, or other biomarkers.
Friday, January 15, 2016
New Device Uses Carbon Nanotubes to Snag Molecules
Nanotube “forest” in a microfluidic channel may help detect rare proteins and viruses.
Tuesday, December 22, 2015
CRISPR-Cas9 Genome Editing Hurdle Overcome
Team re-engineers system to dramatically cut down on editing errors; improvements advance future human applications.
Thursday, December 03, 2015
A Natural Light Switch
MIT scientists identify and map the protein behind a light-sensing mechanism.
Tuesday, September 29, 2015
Biologists Find Unexpected Role for Amyloid-Forming Protein
Yeast protein could offer clues to how Alzheimer’s plaques form in the brain.
Monday, September 28, 2015
How Flu Viruses Gain The Ability To Spread
New study reveals the soft palate is a key site for evolution of airborne transmissibility.
Friday, September 25, 2015
Targeting DNA
Protein-based sensor could detect viral infection or kill cancer cells.
Tuesday, September 22, 2015
Targeting DNA
Protein-based sensor could detect viral infection or kill cancer cells.
Tuesday, September 22, 2015
Learning About Human Health Using Sewage
PhD student Mariana Matus studies human waste to understand individual and community health.
Thursday, September 17, 2015
Protein Found to Play a Key Role in Blocking Pathogen Survival
Calprotectin fends off microbial invaders by limiting access to iron, an important nutrient.
Wednesday, August 26, 2015
Real-Time Data for Cancer Therapy
Biochemical sensor implanted at initial biopsy could allow doctors to better monitor and adjust cancer treatments.
Thursday, August 06, 2015
Bacterial Computing
The “friendly” bacteria inside our digestive systems are being given an upgrade, which may one day allow them to be programmed to detect and ultimately treat diseases such as colon cancer and immune disorders.
Monday, July 13, 2015
New Approach to Global Health Challenges
MIT’s Institute for Medical Engineering and Science brings many tools to the quest for new disease treatments and diagnostic devices.
Friday, September 27, 2013
Why Tumors Become Drug-Resistant
New findings could lead to drugs that fight back when tumors don’t respond to treatment.
Monday, August 12, 2013
Reducing Caloric Intake Delays Nerve Cell Loss
Study points to role of protein in anti-aging benefits of calorie restriction.
Thursday, May 23, 2013
Scientific News
Retractable Protein Nanoneedles
The ability to control the transfer of molecules through cellular membranes is an important function in synthetic biology; a new study from researchers at Harvard’s Wyss Institute for Biologically Inspired Engineering and Harvard Medical School (HMS) introduces a novel mechanical method for controlling release of molecules inside cells.
A Crystal Clear View of Biomolecules
Fundamental discovery triggers paradigm shift in crystallography.
Charting Kidney Cancer Metabolism
Changes in cell metabolism are increasingly recognized as an important way tumors develop and progress, yet these changes are hard to measure and interpret. A new tool designed by MSK scientists allows users to identify metabolic changes in kidney cancer tumors that may one day be targets for therapy.
"Dark Side" of the Transcriptome
New approach to quantifying gene "read-outs" reveals important variations in protein synthesis and has implications for understanding neurodegenerative diseases.
Advancing Synthetic Biology
Living systems rely on a dizzying variety of chemical reactions essential to development and survival. Most of these involve a specialized class of protein molecules — the enzymes.
Structure of Brain Plaques in Huntington's
Researchers at the University of Pittsburgh School of Medicine have shown that the core of the protein clumps found in the brains of people with Huntington's disease have a distinctive structure, a finding that could shed light on the molecular mechanisms underlying the neurodegenerative disorder.
Visualizing a Cancer Drug Target at Atomic Resolution
Using cryo-electron microscopy, researchers were able to view, in atomic detail, the binding of a potential small molecule drug to a key protein in cancer cells.
Pumpjack" Mechanism for Splitting and Copying DNA
High-resolution structural details of cells' DNA-replicating proteins offer new insight into how these molecular machines function
The Power of Three
Overlooked portion of cell “death receptor” critical in some cancers, autoimmune diseases.
Biomarker for Recurring HPV-Linked Oropharyngeal Cancers
A look-back analysis of HPV infection antibodies in patients treated for oropharyngeal (mouth and throat) cancers linked to HPV infection suggests at least one of the antibodies could be useful in identifying those at risk for a recurrence of the cancer, say scientists at the Johns Hopkins University.
Scroll Up
Scroll Down
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!