Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Gladstone, Stanford Scientists Collaborate to Block Lou Gehrig’s Disease Protein

Published: Thursday, November 01, 2012
Last Updated: Thursday, November 01, 2012
Bookmark and Share
Findings suggest therapeutic target for treating devastating and fatal disease.

Scientists at the Gladstone Institutes and the Stanford University School of Medicine have discovered how modifying a gene halts the toxic buildup of a protein found in nerve cells. These findings point to a potential new tactic for treating a variety of neurodegenerative conditions, including amyotrophic lateral sclerosis (ALS, or Lou Gehrig’s disease)—a fatal disease for which there is no cure.

The Gladstone and Stanford scientists began their experiments independently before realizing that combining their efforts could strengthen their results. Their discovery—which involved the work of both neuroscientists and geneticists—underscores the importance of collaborative and cross-disciplinary research when dealing with complex neurodegenerative diseases such as ALS.

ALS usually strikes between the ages of 40 and 75, ravaging the body’s motor neurons—nerve cells that control muscle movement. This causes muscle weakness, difficulty swallowing and breathing, paralysis and, ultimately, death—often just three to five years after diagnosis. At any given time, as many as 30,000 Americans are living with ALS—which afflicts physicist Stephen Hawking and which killed baseball legend Lou Gehrig.

In a paper published today online in Nature Genetics, researchers in the laboratories of Stanford Associate Professor Aaron D. Gitler, PhD, and Gladstone Senior Investigators Robert V. Farese, Jr., MD and Steve Finkbeiner, MD, PhD, describe how shutting off a gene called Dbr1 in yeast cells and in neurons obtained from rats can protect both cell types from the toxic effects of TDP-43—a protein that plays a key role in ALS.

“Mutations in the gene that produces TDP-43 can cause this protein to build up in cells,” said Dr. Farese, who is also a professor at the University of California, San Francisco, with which Gladstone is affiliated. “Over time, TDP-43 accumulation inside motor neurons can reach toxic levels and bind to RNAs—small bits of genetic material that act as an intermediary between genes and proteins. One theory is that this binding interferes with the RNAs’ normal functions and impairs the overall health of cells. Eventually, the neurons degrade and die, contributing to the rapid progression of ALS symptoms.”

It was already known that TDP-43 contributes to ALS. But disabling this protein directly is not an option, as TDP-43 is vital for cell survival. However, too much of it is toxic. So the Gladstone and Stanford researchers had to look for other genes that could be hijacked to reduce those toxic levels. One such gene, Dbr1, makes an enzyme that normally breaks down RNAs. The research teams found that if they lowered Dbr1 levels, the RNAs could not be broken down. These unprocessed RNAs could then serve as “bait” to bind to TDP-43, storing it away safely—and presumably allowing the RNAs that maintain healthy neurons to continue to function normally.

In laboratory experiments, Dr. Farese and Gladstone Postdoctoral Fellow Matthew Higgins, PhD, first showed that yeast makes an excellent model for studying ALS.  Many RNA-processing genes in yeast resemble those found in humans—including Dbr1. At the same time, Dr. Gitler’s lab found that Dbr1 suppressed TDP-43 toxicity in yeast models. So, the Farese and Gitler laboratories compared these findings to those from rat neurons analyzed Dr. Finkbeiner’s lab.

“Even though millions of years of evolution separate yeast and rats, we found the same results in both models,” said Dr. Higgins, one of the study’s lead authors. “Our combined analyses revealed that the leftover RNAs acted as a decoy—tricking TDP-43 into binding them rather than the RNAs that are crucial for cell survival. The cells remained healthy.”

The findings—while preliminary—could have far-reaching implications, as they may be relevant also to other conditions besides ALS. For example, TDP-43 toxicity has also been observed in frontotemporal dementia (FTD), a form of early-onset dementia that causes progressive memory loss. However, questions remain before Dbr1 can be harnessed to treat patients.

“We don’t yet know how switching off the Dbr1 gene in a living organism will affect the organism’s overall health,” said Dr. Gitler, who is one of the paper’s senior authors. “Our next steps are to extend these studies from yeast and cell culture into live animal models. Then we can begin to identify small molecules that may inhibit Dbr1.”

“We are optimistic about what the results of our joint efforts might mean to ALS patients in the future,” added Dr. Finkbeiner, who is also a UCSF professor. “People with ALS have lived and died for far too long with no hope of recovery. We believe that these findings could be a step towards changing that.”

Gladstone Staff Scientist Sami Barmada, MD, PhD, and Gladstone Associate Investigator Nevan Krogan, PhD, also participated in this research. Funding sources include the Consortium for Frontotemporal Dementia Research, the ALS Association, the National Institute of Neurological Disorders and Stroke, the National Center for Research Resources and the National Institutes of Health.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Protein that Causes FTD also Implicated in Alzheimer’s Disease
Low levels of the naturally occurring protein progranulin exacerbate cellular and cognitive dysfunction, while raising levels can prevent abnormalities in an Alzheimer model.
Tuesday, October 07, 2014
Gladstone Scientists Offer New Insight into the Regulation of Stem Cells and Cancer Cells
Breakthrough discovery is likely to advance medicine and human health.
Tuesday, August 23, 2011
Scientific News
Probing the Forces Involved in Creating The Mitotic Spindle
Scientists at The Rockefeller University reveal new insights into the mechanical forces that govern elements of the mitotic spindle formation.
Identifying Cancer’s Food Sensors May Help to Halt Tumour Growth
Oxford University researchers have identified a protein used by tumours to help them detect food supplies. Initial studies show that targeting the protein could restrict cancerous cells’ ability to grow.
Specific Variations in RNA Splicing Linked to Breast Cancer
Researchers have identified cellular changes that may play a role in converting normal breast cells into tumors. Targeting these changes could potentially lead to therapies for some forms of breast cancer.
Thousands of Protein Interactions Identified
Thanks to the work by Utrecht University researcher Fan Liu and her colleagues, it is now possible to map the interactions between proteins in human cells.
Are Changes to Current Colorectal Cancer Screening Guidelines Required?
Editorial suggests more research is needed to pinpoint age to end aggressive screening.
Cell-Cell Repulsion Mystery Solved
University of Basel findings could be important for cancer research.
Assessing Cancer Patient Survival and Drug Sensitivity
RNA editing events another way to investigate biomarkers and therapy targets.
New Molecular Marker for Killer Cells
Cell marker enables prognosis about the course of infections.
Controlling Body Temperature in Response to 'Fight or Flight'
New research in The FASEB Journal suggests that blocking TRPV1 protein causes an increased release of noradrenaline, leading to an increase in core body temperatures.
Resurrected Proteins Double Their Natural Activity
Researchers demonstrate method for reviving denatured proteins.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos