Corporate Banner
Satellite Banner
Proteomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Bacteria Yield Clues About Why Proteins go Bad in ALS and Alzheimer’s

Published: Friday, November 02, 2012
Last Updated: Friday, November 02, 2012
Bookmark and Share
Scientists are unsure why proteins form improperly and cluster together in bunches, a hallmark of neurodegenerative diseases.

“The question we are all asking is what happens when protein synthesis goes wrong?” said Jesse Rinehart, assistant professor of cellular and molecular physiology at Yale’s West Campus and co-senior author of the paper.

Proteins are created from instructions encoded in DNA and assembled in ribosomes within the cells. However, sometimes they are not assembled correctly, and these misfolded proteins tend to aggregate, a process typified by the plaques that form in the brains of Alzheimer’s patients.

The Yale team — led by Rinehart and Dieter Söll, Sterling Professor of Molecular Biophysics and Biochemistry and professor of chemistry — showed that the antibiotic streptomycin can trigger protein aggregations in the bacterium E. coli. Using large-scale proteomics and genetic screens, they analyzed the aggregates and searched for bacterial proteins that make E. coli cells resistant to antibiotics and other threats. The researchers discovered how one of these proteins protecting the bacteria from hydrogen peroxide also suppressed the aggregation of proteins triggered by streptomycin.

“The properties of these protein aggregates are still mysterious, but here we have a glimpse of how they form and how cells escape from these aggregates in bacteria,” Söll said.

The study not only provides insight into how these protein aggregates can form, but illustrates how bacteria defend themselves against toxic threats. Such information could help scientists develop more effective antibiotics, Rinehart said.

Jiqiang Ling was the lead author of the paper. Other Yale authors included Chris Cho, Li-Tao Guo and Hans Aerni.

The work was funded by grants from the National Institute of General Medical Sciences and the National Institute of Diabetes and Digestive and Kidney Diseases.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More than 4,400+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

New Type of Drug Can Target All Disease-causing Proteins
Current drugs block the actions of only about a quarter of known disease-causing proteins, but Yale University researchers have developed a technology capable of not just inhibiting, but destroying every protein it targets.
Monday, June 15, 2015
Single-Cell, 42-plexed Protein Analysis Achieved with a New Microchip Technology
A novel microdevice capable of detecting 42 unique immune effector proteins has been developed.
Tuesday, February 17, 2015
Tarantula Venom Holds Hope for New Painkillers
Screening more than 100 spider toxins, Yale researchers identified a protein from the venom of the Peruvian green velvet tarantula that blunts activity in pain-transmitting neurons.
Monday, February 17, 2014
Biomarkers Indicate Increased Risk of Death After Discharge from Cardiac Surgery
Following cardiac surgery, patients with elevated levels of kidney injury biomarkers are at a significantly higher risk of dying during the next three years, a Yale study has found.
Monday, December 23, 2013
Alzheimer’s Missing Link Found: Is a Promising Target for New Drugs
Researchers have discovered a protein that is the missing link in the complicated chain of events that lead to Alzheimer’s disease.
Monday, September 09, 2013
Lung Disease and Melanoma: a Common Molecular Mechanism?
Researchers have solved a biological mystery about the common genesis of many serious diseases such as asthma and metastatic melanoma.
Monday, September 02, 2013
Yale Nobel Laureate Honored with Connecticut Medal of Science
Thomas Steitz will receive the 2013 Connecticut (CT) Medal of Science, the state’s top prize for technological achievement crucial to economic development.
Monday, April 22, 2013
Yale Scientists Find a Way to Make Disease-Causing Proteins Vulnerable to Drugs
Researchers have identified a novel way to design drugs for previously inaccessible proteins.
Friday, July 27, 2012
Yale Scientists Pinpoint Key Ingredient in Fighting Pneumonia
Study shows that a mysterious protein produced by a wide spectrum of living things is crucial in regulating the immune response to the most common form of pneumonia.
Friday, July 20, 2012
Yale Researchers Awarded Grant to Develop Treatment of Williams Syndrome
A $320,000 grant will be utilized to study the elastin gene in order to design new treatments for Williams Syndrome.
Wednesday, October 28, 2009
Researchers Announce that two Proteins have Unexpected Effects on Autoimmune Diseases Such as Lupus
Drugs that target these proteins could be important therapies for autoimmunity.
Wednesday, November 01, 2006
Scientific News
Potential “Good Fat” Biomarker
New method to measure the activity of energy consuming brown fat cells could ease the testing weight loss drugs.
Computational Model Finds New Protein-Protein Interactions
Researchers at University of Pittsburgh have discovered 500 new protein-protein interactions (PPIs) associated with genes linked to schizophrenia.
New Insights into Gene Regulation
Researchers have solved the three-dimensional structure of a gene repression complex that is known to play a role in cancer.
Controlling RNA in Living Cells
Modular, programmable proteins can be used to track or manipulate gene expression.
Soy Shows Promise as Natural Anti-Microbial Agent
Soy isoflavones and peptides may inhibit the growth of microbial pathogens that cause food-borne illnesses, according to a new study from University of Guelph researchers.
Potential Target for Revolutionary Antibiotics
An international team of including the Lomonosov Moscow State University researchers discovered which enzyme enables Escherichia coli bacterium (E. coli) to breathe.
DNA Barcodes Gone Wild
A team of researchers at University of Toronto’s Donnelly Centre and Sinai Health System’s Lunenfeld-Tanenbaum Research Institute (LTRI) has developed a new technology that can stitch together DNA barcodes inside a cell to simultaneously search amongst millions of protein pairs for protein interactions.
Biomarkers for Profiling Prostate Cancer Patients
Exiqon A/S has announced the publication of validation of prognostic microRNA biomarkers for the aggressiveness of prostate cancer in independent cohorts.
Grant to Fund Million Peaks Project
The European Research Council (ERC) has awarded a prestigious Advanced Grant to Prof. Peter Schoenmakers, Prof. Albert Polman and Prof. Huib Bakker, all three of whom work at the University of Amsterdam (UvA).
Study Finds Factors That May Influence Influenza Vaccine Effectiveness
Researchers at NIH have suggested that the long-held approach to predicting seasonal influenza vaccine effectiveness may need to be revisited.
Scroll Up
Scroll Down
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,400+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!