Corporate Banner
Satellite Banner
Proteomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

A Protein's Role in Helping Cells Repair DNA Damage

Published: Tuesday, November 06, 2012
Last Updated: Tuesday, November 06, 2012
Bookmark and Share
A new study elucidates the role that a protein called TFIIB plays in supporting the activity of p53, a protein that helps suppress tumors.

In a new study, University at Buffalo scientists describe the role that a protein called TFIIB plays in helping cells repair DNA damage, a critical function for preventing the growth of tumors.
The research appeared online on Oct. 30 in the Proceedings of the National Academy of Sciences (PNAS) Early Edition.

TFIIB, short for "transcription factor II B," is a protein that binds to DNA in cells to initiate the process of transcription, which is critical for building new proteins.

When DNA damage occurs, TFIIB is altered in a way that halts general transcription, enabling a cell to give priority to repair, the researchers found. With the shut-down in effect, cells are able to prioritize the important functions carried out by a tumor-suppressing protein called p53, said lead author Jayasha Shandilya, a postdoctoral researcher in UB's Department of Biological Sciences.

"P53 is a very important protein in humans and other multicellular organisms," Shandilya said. "It is called the 'guardian of the genome' because it helps maintain the stability of the genome."

About half of cancer cases involve a mutation or deletion of the p53 gene. When DNA is damaged, it activates p53, which not only stimulates the DNA repair pathway, but also triggers the synthesis of proteins that stop cells from dividing before problems are fixed, she said. In cases where the damage is irreparable, p53 initiates apoptosis, a process of programmed cell death.

In PNAS, Shandilya and colleagues report that for normal transcription to occur, TFIIB must undergo a process called phosphorylation, in which a phosphate group is attached to the protein.

But when the scientists studied cells treated with DNA damaging agents, they found that TFIIB was dephosphorylated, preventing general transcription and enabling the cells to focus resources on helping p53 carry out its tumor suppressing functions. In essence, p53 can bypass the need for TFIIB phosphorylation to activate transcription of its target genes, which are vital for DNA damage response.

Shandilya's colleagues on the PNAS paper are Yuming Wang, currently working at Cancer Research UK, and Stefan Roberts, assistant professor of biological sciences. Roberts oversaw the study, with funding from the National Institute of General Medical Sciences, one of the National Institutes of Health.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Cellular Contamination Pathway for Heavy Elements Identified
Berkeley Lab scientists find that an iron-binding protein can transport actinides into cells.
Lemon Juice and Human Norovirus
Citric acid may prevent the highly contagious norovirus from infecting humans, scientists discovered from the German Cancer Research Center.
Signature of Microbiomes Linked to Schizophrenia
Studying microbiomes in throat may help identify causes and treatments of brain disorder.
Structural Discoveries Could Aid in Better Drug Design
Scientists have uncovered the structural details of how some proteins interact to turn two different signals into a single integrated output.
Protein Found to Play a Key Role in Blocking Pathogen Survival
Calprotectin fends off microbial invaders by limiting access to iron, an important nutrient.
Study Identifies the Off Switch for Biofilm Formation
New discovery could help prevent the formation of infectious bacterial films on hospital equipment.
How DNA ‘Proofreader’ Proteins Pick and Edit Their Reading Material
Researchers from North Carolina State University and the University of North Carolina at Chapel Hill have discovered how two important proofreader proteins know where to look for errors during DNA replication and how they work together to signal the body’s repair mechanism.
Protein Found to Control Inflammatory Response
A new Northwestern Medicine study shows that a protein called POP1 prevents severe inflammation and, potentially, diseases caused by excessive inflammatory responses.
X-ray Laser Experiment Could Help in Designing Drugs for Brain Disorders
Scientists found that when two protein structures in the brain join up, they act as an amplifier for a slight increase in calcium concentration, triggering a gunshot-like release of neurotransmitters from one neuron to another.
Team Identifies Structure of Tumor-Suppressing Protein
An international group of researchers led by Carnegie Mellon University physicists Mathias Lösche and Frank Heinrich have established the structure of an important tumor suppressing protein, PTEN.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!