Corporate Banner
Satellite Banner
Proteomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Key Molecule Could Reveal Many Cancers Early On

Published: Wednesday, November 07, 2012
Last Updated: Wednesday, November 07, 2012
Bookmark and Share
A technique for monitoring high levels of a protein found in many pre-cancerous cell types – including breast, lung and skin cancer – could be used to detect cancer early.

Their lab study, funded by Cancer Research UK, suggests that the same approach could potentially be used to detect precancerous breast cells, deliver radiotherapy to destroy tumours and monitor the effectiveness of treatment.

The approach makes use of a protein called gamma-H2AX as a marker for DNA damage in an early stage of cancer development.

The Oxford team attached fluorescent markers to an antibody which ‘homes in’ on and attaches to gamma-H2AX. Fluorescent 'snap-shots' of gamma-H2AX then revealed the location of pre-cancerous breast cancer cells at a very early stage.

Professor Katherine Vallis, who led the study at the Gray Institute for Radiation Oncology and Biology at Oxford University, said: 'This early research reveals that tracking this important molecule could allow us to detect DNA damage throughout the body. If larger studies confirm this, the protein could provide a new route to detect cancer at its very earliest stage – when it is easier to treat successfully.'

Previously the Oxford team modified an antibody to target gamma-H2AX and deliver radiotherapy to breast cancer cells which contained high levels of the protein. This form of radiotherapy works by boosting DNA damage until cells can no longer repair mistakes – and die.

The results confirmed that the radioactive antibody killed breast cancer cells and slowed tumour growth.

Professor Vallis added: 'We need to confirm these findings in larger studies before we know if this approach could benefit patients. But these initial results show that it may be possible to track down cells with high levels of DNA damage, and destroy them before they became cancerous.

'One day we may be able to scan the body to map out the radioactive antibodies that have attached to the gamma-H2AX molecule. This could also allow doctors to paint a useful picture of how effective a treatment is.'

Dr Julie Sharp, Cancer Research UK’s senior science information manager, said: 'This important study reveals that targeting this key molecule could provide an exciting route for new ways to detect cancer at an earlier stage – and help to deliver radiotherapy and monitor its effect on tumours.'


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More than 4,900+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Protein Clue To Sudden Cardiac Death
A protein has been shown to have a surprising role in regulating the 'glue' that holds heart cells together, a finding that may explain how a gene defect could cause sudden cardiac death.
Tuesday, February 17, 2015
'Jekyll and Hyde' Protein Offers New Route to Cancer Drugs
The mood changes of a 'Jekyll-and-Hyde' protein, which sometimes boosts tumour cell growth and at other times suppresses it, have been explained.
Friday, September 27, 2013
Scientific News
Liquid Biopsies: Miracle Diagnostic or Next New Fad?
Thanks to the development of highly specific gene-amplification and sequencing technologies liquid biopsies access more biomarkers relevant to more cancers than ever before.
Uncovering Rhinovirus C Structure
Researchers have determined the structure of rhinovirus C. Their findings may aid the development of antiviral therapies and vaccines.
New Centre Offers Ultra-Speed Protein Analysis
UW-Madison researchers to establish development centre for next-gen protein measurement technologies.
Protein Nanocages Could Improve Drug Design and Delivery
HHMI scientists have designed and built 10 large protein icosahedra that are similar to viral capsids that carry viral DNA.
Virus Inspired Cell Cargo Ships
Virus-inspired container design may lead to cell cargo ships following construction of ten large, two-component, icosahedral protein complexes.
Protein Reinforces Growth of Damaged Muscles
Biologists have found a protein involved in stem cells that bolsters damaged muscle tissue growth - potential for muscle degeneration treatments.
Structure of Cold Virus Solved
Researchers have identified the structure of an elusive cold virus linked to child asthma and respiratory infections, providing the foundation for treating the virus.
New Protein Model Could Accelerate Drug Development
Stony Brook-led international research team creates ultra-fast approach to model protein interactions.
Researchers Can Control Genes Involved in Cancer
A new way to control the activity of a protein, that is often upregulated in cancer, has been discovered by Moffitt researchers through monoubiquitination mechanism.
Mitochondrial Role in Metastatic Cancer
Researchers have manipulated proteins, sourced from tumour cells, that are essential for maintaining tumour cells and in doing so, have significantly reduced the ability of cancer cells.
Scroll Up
Scroll Down
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,900+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!