Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Key Molecule Could Reveal Many Cancers Early On

Published: Wednesday, November 07, 2012
Last Updated: Wednesday, November 07, 2012
Bookmark and Share
A technique for monitoring high levels of a protein found in many pre-cancerous cell types – including breast, lung and skin cancer – could be used to detect cancer early.

Their lab study, funded by Cancer Research UK, suggests that the same approach could potentially be used to detect precancerous breast cells, deliver radiotherapy to destroy tumours and monitor the effectiveness of treatment.

The approach makes use of a protein called gamma-H2AX as a marker for DNA damage in an early stage of cancer development.

The Oxford team attached fluorescent markers to an antibody which ‘homes in’ on and attaches to gamma-H2AX. Fluorescent 'snap-shots' of gamma-H2AX then revealed the location of pre-cancerous breast cancer cells at a very early stage.

Professor Katherine Vallis, who led the study at the Gray Institute for Radiation Oncology and Biology at Oxford University, said: 'This early research reveals that tracking this important molecule could allow us to detect DNA damage throughout the body. If larger studies confirm this, the protein could provide a new route to detect cancer at its very earliest stage – when it is easier to treat successfully.'

Previously the Oxford team modified an antibody to target gamma-H2AX and deliver radiotherapy to breast cancer cells which contained high levels of the protein. This form of radiotherapy works by boosting DNA damage until cells can no longer repair mistakes – and die.

The results confirmed that the radioactive antibody killed breast cancer cells and slowed tumour growth.

Professor Vallis added: 'We need to confirm these findings in larger studies before we know if this approach could benefit patients. But these initial results show that it may be possible to track down cells with high levels of DNA damage, and destroy them before they became cancerous.

'One day we may be able to scan the body to map out the radioactive antibodies that have attached to the gamma-H2AX molecule. This could also allow doctors to paint a useful picture of how effective a treatment is.'

Dr Julie Sharp, Cancer Research UK’s senior science information manager, said: 'This important study reveals that targeting this key molecule could provide an exciting route for new ways to detect cancer at an earlier stage – and help to deliver radiotherapy and monitor its effect on tumours.'

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Protein Clue To Sudden Cardiac Death
A protein has been shown to have a surprising role in regulating the 'glue' that holds heart cells together, a finding that may explain how a gene defect could cause sudden cardiac death.
Tuesday, February 17, 2015
'Jekyll and Hyde' Protein Offers New Route to Cancer Drugs
The mood changes of a 'Jekyll-and-Hyde' protein, which sometimes boosts tumour cell growth and at other times suppresses it, have been explained.
Friday, September 27, 2013
Scientific News
Cell's Waste Disposal System Regulates Body Clock Proteins
New way to identify interacting proteins could identify potential drug targets.
How a Molecular Motor Untangles Protein
Diseases such as Alzheimer’s, Parkinson’s and prion diseases, all involve “tangled” proteins.
Compound Doubles Up On Cancer Detection
Researchers have found that tagging a pair of markers found almost exclusively on a common brain cancer yields a cancer signal that is both more obvious and more specific to cancer.
How Cell Growth Triggers Cell Division
Researchers in Jan Skotheim's lab have discovered a previously unknown mechanism that controls how large cells grow, an insight that could one day provide insight into attacking diseases such as cancer.
Probing the Forces Involved in Creating The Mitotic Spindle
Scientists at The Rockefeller University reveal new insights into the mechanical forces that govern elements of the mitotic spindle formation.
Identifying Cancer’s Food Sensors May Help to Halt Tumour Growth
Oxford University researchers have identified a protein used by tumours to help them detect food supplies. Initial studies show that targeting the protein could restrict cancerous cells’ ability to grow.
Specific Variations in RNA Splicing Linked to Breast Cancer
Researchers have identified cellular changes that may play a role in converting normal breast cells into tumors. Targeting these changes could potentially lead to therapies for some forms of breast cancer.
Thousands of Protein Interactions Identified
Thanks to the work by Utrecht University researcher Fan Liu and her colleagues, it is now possible to map the interactions between proteins in human cells.
Are Changes to Current Colorectal Cancer Screening Guidelines Required?
Editorial suggests more research is needed to pinpoint age to end aggressive screening.
Cell-Cell Repulsion Mystery Solved
University of Basel findings could be important for cancer research.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos