Corporate Banner
Satellite Banner
Proteomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Team Reveals Key Protein Interactions Involved in Neurodegenerative Disease

Published: Thursday, November 15, 2012
Last Updated: Thursday, November 15, 2012
Bookmark and Share
New study reveals the structure of c-jun-N-terminal kinases (JNK) enzymes.

Scientists from the Florida campus of The Scripps Research Institute (TSRI) have defined the molecular structure of an enzyme as it interacts with several proteins involved in outcomes that can influence neurodegenerative disease and insulin resistance.

The enzymes in question, which play a critical role in nerve cell (neuron) survival, are among the most prized targets for drugs to treat brain disorders such as Parkinson’s disease, Alzheimer’s disease and amyotrophic lateral sclerosis (ALS).

The study was published online ahead of print on November 8, 2012, by the journal Structure.

The new study reveals the structure of a class of enzymes called c-jun-N-terminal kinases (JNK) when bound to three peptides from different protein families; JNK is an important contributor to stress-induced apoptosis (cell death), and several studies in animal models have shown that JNK inhibition protects against neurodegeneration.

“Our findings have long-range implications for drug discovery,” said TSRI Professor Philip LoGrasso, who, along with TSRI Associate Professor Kendall Nettles, led the study.

Professor Nettles continued, “Knowing the structure of JNK bound to these proteins will allow us to make novel substrate competitive inhibitors for this enzyme with even greater specificity and hopefully less toxicity.”

The scientists used what they called structure class analysis, looking at groups of structures, which revealed subtle differences not apparent looking at them individually.

“From a structural point of view, these different proteins appear to be very similar, but the biochemistry shows that the results of their binding to JNK were very different,” he said.

LoGrasso and his colleagues were responsible for creating and solving the crystal structures of the three peptides (JIP1, SAB, and ATF-2) with JNK3 using a technique called x-ray crystallography, while Nettles handled much of the data analysis.

All three peptides have important effects, LoGrasso said, inducing two distinct inhibitory mechanisms-one where the peptide caused the activation loop to bind directly in the ATP pocket, and another with allosteric control (that is, using a location on the protein other than the active site). Because JNK signaling needs to be tightly controlled, even small changes in it can alter a cell’s fate.

“Solving the crystal structures of these three bound peptides gives us a clearer idea of how we can block each of these mechanisms related to cell death and survival,” LoGrasso said. “You have to know their structure to know how to deal with them.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 4,000+ scientific posters on ePosters
  • More than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Pinpointing Ebola’s Weak Spots
New study illuminates structure of mystery protein.
Thursday, August 11, 2016
New Cancer Drug Target in Dual-Function Protein
Scientists at The Scripps Research Institute (TSRI) have identified a protein that launches cancer growth and appears to contribute to higher mortality in breast cancer patients.
Wednesday, June 29, 2016
New Targets for Diabetes, Inflammation Discovered
The Scripps Research Institute and Salk Scientists discover 'outlier' enzymes that could offer new targets to treat diabetes and inflammation.
Tuesday, March 29, 2016
Single ‘Transformer’ Proteins
A new study led by scientists at The Scripps Research Institute (TSRI) and St. Jude Children’s Research Hospital shows how a protein involved in cancer twists and morphs into different structures.
Monday, January 11, 2016
TSRI Team Finds Unique Anti-Diabetes Compound
Scientists from The Scripps Research Institute (TSRI) have deployed a powerful new drug discovery technique to identify an anti-diabetes compound with a novel mechanism of action.
Thursday, December 10, 2015
Protein 'Talks' to Wrong Partners in Cystic Fibrosis
Scientists at The Scripps Research Institute (TSRI) have found evidence that a mutant protein responsible for most cases of cystic fibrosis is so busy “talking” to the wrong cellular neighbors that it cannot function normally and is prematurely degraded.
Monday, December 07, 2015
'Fingerprints' for Major Drug Development Targets
For the first time, scientists from the Florida campus of The Scripps Research Institute (TSRI) have created detailed “fingerprints” of a class of surface receptors that have proven highly useful for drug development.
Friday, December 04, 2015
Long-Sought Protein Sensor for the ‘Sixth Sense’ Discovered
In a study led by scientists from The Scripps Research Institute (TSRI)the sensor protein for propioception has been identified.
Monday, November 16, 2015
TSRI, UC San Diego Launch 'Virtual Cell' Project
Drawing on complementary strengths of two San Diego institutions, The Scripps Research Institute (TSRI) and the University of California, San Diego (UC San Diego) have formed a new consortium with a big mission: to map cells in space and time.
Monday, September 21, 2015
Scripps Scientists Awarded NIH Grant for Biomarker Studies
$2.3 million grant awarded to develop new diagnostics for cancer, rheumatoid arthritis, colitis.
Tuesday, May 06, 2014
Scientists Solve 40-year Mystery of How Sodium Controls Opioid Brain Signaling
The findings pave way for new therapies for treating pain and mood disorders.
Thursday, January 16, 2014
Scientists Discover a New Type of Protein Modification that May Play a Role in Cancer and Diabetes
Scientists at The Scripps Research Institute (TSRI) have discovered a new type of chemical modification that affects numerous proteins within mammalian cells.
Tuesday, August 06, 2013
Chemists Devise Inexpensive, Benchtop Method for Marking and Selecting Cells
Chemists at The Scripps Research Institute have found an easier way to perform one of the most fundamental tasks in molecular biology.
Wednesday, January 16, 2013
Scientists Discover How Two Proteins Help Keep Cells Healthy
The work has implications for cancer drug development.
Thursday, December 06, 2012
Scientists Find Structure of a Protein that Makes Cancer Cells Resistant to Chemotherapy
A research team at the Scripps Research Institute has obtained the first glimpse of a protein that keeps certain substances, including many drugs, out of cells.
Monday, March 30, 2009
Scientific News
Protein-Based “Cancer Signature” Uncovered
Researchers investigated the expression of ribosomal proteins in human tissues and discovered a cancer type specific signature which could be used to predict the progression of the disease.
Predicting Leukaemia Development in Cancer Patients
Biomarker may predict which formerly treated cancer patients will develop highly fatal form of leukemia.
‘NoBody,’ a Microprotein On a Mission
Researchers identify over 400 microproteins encoded in the human genome, one of which clears unneeded genetic material inside cells.
Top 10 Life Science Innovations of 2016
2016 has seen the release of some truly innovative products. To help you digest these developments, The Scientist have listed their top picks for the year.
Largest Resource of Protein-Protein Interactions
Researchers have developed the largest ever database of protein-protein interactions.
Bright Red Fluorescent Protein Created
Scientists have created a bright red, fluorescent protein that could be used to track essential cellular processes.
Protein Self-Regulates Abundance
Researchers have uncovered how a protein, that plays a crucial role in embryonic stem cell renewal, is regulated.
'Lab on the Skin' for Sweat Analysis
Northwestern University researchers develop a low-cost wearable electronic device that collects and analyzes sweat for health monitoring.
Building Better Nanodiscs
Researchers have improved upon the design of nanodiscs that provide an unprecedented view of viral infection.
Breast Cancer Cells Starve for Cystine
Depriving triple negative breast cancer, a treatment-resistant form of breast cancer, of cystine results in cancer cell death.
Scroll Up
Scroll Down
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
4,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!