Corporate Banner
Satellite Banner
Proteomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

$19.4 Million Contract Establishes Malaria Research Consortium

Published: Wednesday, November 21, 2012
Last Updated: Wednesday, November 21, 2012
Bookmark and Share
NIAID, part of the NIH, has awarded a five-year contract up to $19.4 million, depending on contract options exercised, to establish the Malaria Host-Pathogen Interaction Center (MaHPIC).

The consortium includes researchers at Emory University, with partners at the University of Georgia (UGA), the Georgia Institute of Technology (Georgia Tech) and the Centers for Disease Control and Prevention (CDC). The Yerkes National Primate Research Center of Emory University will administer the contract.

The MaHPIC team will use the comprehensive research approach of systems biology to study and catalog in molecular detail how malaria parasites interact with their human and animal hosts. This knowledge will be fundamental to developing and evaluating new diagnostic tools, antimalarial drugs and vaccines for different types of malaria. The project will integrate data generated by malaria research, functional genomics, proteomics, lipidomics and metabolomics cores via informatics and computational modeling cores.

MaHPIC combines Emory investigators’ interdisciplinary experience in malaria research, metabolomics, lipidomics and human and non-human primate immunology and pathogenesis with UGA’s expertise in pathogen bioinformatics and large database systems, and Georgia Tech’s experience in mathematical modeling and systems biology. The CDC will provide support in proteomics and malaria research, including nonhuman primate and vector/mosquito infections.

The principal investigator is Mary Galinski, professor of medicine, infectious diseases and global health at Emory University School of Medicine and director of Emory’s International Center for Malaria Research, Education & Development (ICMRED). She has been leading malaria research projects at the Emory Vaccine Center and Yerkes for 15 years.

"We are thankful to the National Institute of Allergy and Infectious Diseases for recognizing the enormous potential of taking a systems biology approach to studying malaria infections," Galinski says.

"This project will help us better understand malaria as a disease in depth and pave the way for new preventive and therapeutic measures. We expect to provide a groundbreaking wealth of information that will address current challenges in fighting malaria. The Georgia team we have assembled is outstanding and we also look forward to working closely with prominent international partners from malaria endemic countries."

A prestigious international Scientific Consultation Group is also involved, and met with the MaHPIC team at Emory recently, following the annual American Society of Tropical Medicine and Hygiene conference held in Atlanta.

The MaHPIC project involves studying both nonhuman primate infections and clinical samples from humans around the world. For the study of malaria, "systems biology" means first collecting comprehensive data on how a Plasmodium parasite infection produces changes in host and parasite genes, proteins, lipids, the immune response and metabolism.

Computational researchers will then design mathematical models to simulate and analyze what’s happening during an infection and to find patterns that predict the course of the disease and its severity. Together, the insights will help guide the development of new interventions. Co-infections and morbidities will also come into play, as well as different cultural and environmental backgrounds of the communities involved.

The team will use metabolomics techniques that will allow scientists to detect, analyze and make crucial associations with thousands of chemicals detectable in the blood via mass spectrometry. The techniques were developed at Emory by Dean Jones, professor and director of the Clinical Biomarkers Laboratory and MaHPIC’s metabolomics core leader.

"This is a wonderful opportunity to integrate multiple types of rich biological data into dynamic models that will help scientists around the world devise novel strategies to help control not just malaria but other infectious diseases," says Greg Gibson, professor and director of the Center of Integrative Genomics at Georgia Tech.

"MaHPIC will generate experimental, clinical and molecular data associated with malaria infections in nonhuman primates on an unprecedented scale," says Jessica Kissinger, who will direct the project’s informatics team. Kissinger is professor of genetics at UGA and director of UGA’s Institute of Bioinformatics.

"In addition to mining the massive quantities of integrated data for trends and patterns that may help us understand host and pathogen interaction biology, we may identify potential targets for early and species-specific diagnosis of malaria, which is critical for proper treatment," Kissinger says.
The MaHPIC team will develop an informative public website and specialized web portal to share the project’s data and newly developed data analysis tools with the scientific community worldwide.

"The sheer amount of detailed, high-quality information amassed by the experimental groups will be unprecedented. With this project we have an incredible opportunity to integrate data with modern computational tools of dynamic modeling," says Eberhard Voit, professor of biomedical engineering and cofounder of the Integrative BioSystems Institute at Georgia Tech. "This integration will allow us to analyze the complex networks of interactions between hosts and parasites in a manner never tried before. Systems biology will be the foundation for this integration."


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 4,000+ scientific posters on ePosters
  • More than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Biomarkers for Psychotic Disorders
A team of researchers led by faculty at the University of Georgia has identified a number of biological markers that make it possible to classify mental disorders with greater precision.
Thursday, December 10, 2015
Essential Component of Antiviral Defense Identified
Infectious disease researchers at the University of Georgia have identified a signaling protein critical for host defense against influenza infection.
Friday, November 13, 2015
Scientific News
Predicting Leukaemia Development in Cancer Patients
Biomarker may predict which formerly treated cancer patients will develop highly fatal form of leukemia.
‘NoBody,’ a Microprotein On a Mission
Researchers identify over 400 microproteins encoded in the human genome, one of which clears unneeded genetic material inside cells.
Top 10 Life Science Innovations of 2016
2016 has seen the release of some truly innovative products. To help you digest these developments, The Scientist have listed their top picks for the year.
Largest Resource of Protein-Protein Interactions
Researchers have developed the largest ever database of protein-protein interactions.
Bright Red Fluorescent Protein Created
Scientists have created a bright red, fluorescent protein that could be used to track essential cellular processes.
Protein Self-Regulates Abundance
Researchers have uncovered how a protein, that plays a crucial role in embryonic stem cell renewal, is regulated.
'Lab on the Skin' for Sweat Analysis
Northwestern University researchers develop a low-cost wearable electronic device that collects and analyzes sweat for health monitoring.
Building Better Nanodiscs
Researchers have improved upon the design of nanodiscs that provide an unprecedented view of viral infection.
Breast Cancer Cells Starve for Cystine
Depriving triple negative breast cancer, a treatment-resistant form of breast cancer, of cystine results in cancer cell death.
Novel Urine Test to Predict High-Risk Cervical Cancer
Preliminary studies affirm accuracy and potential cost savings to screen for virus-caused malignancy.
Scroll Up
Scroll Down
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
4,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!