Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Mechanism to Repair Clumped Proteins Explained

Published: Friday, November 23, 2012
Last Updated: Friday, November 23, 2012
Bookmark and Share
Heidelberg researchers uncover the function of specific molecular chaperones.

Clumped proteins can be dissolved with the aid of cellular repair systems – a process of critical importance for cell survival especially under conditions of stress. Heidelberg researchers have now decrypted the fundamental mechanism for dissolving protein aggregates that involves specific molecular chaperones. Scientists from the Center for Molecular Biology of Heidelberg University and the German Cancer Research Center cooperated with experts from the Heidelberg Institute for Theoretical Studies on the project. The results of the research appeared in two simultaneously published articles in “Nature Structural & Molecular Biology”.

Proteins consist of long chains of successive amino acids and perform vital functions in every cell. To function, every amino acid chain must first assume a specific three-dimensional structure – it has to fold itself. A change in growth conditions, such as an increase in ambient temperature, can cause proteins to lose their structure and unfold. Unfolded protein chains run the risk of clumping, forming protein aggregates. “If such aggregates form, the proteins cannot function, which can lead to cell death, which we see in neurodegenerative diseases such as Alzheimer’s and Parkinson’s, and even in ageing processes”, explains Prof. Dr. Bernd Bukau, Director of the Center for Molecular Biology of Heidelberg University (ZMBH), who is also a researcher at the German Cancer Research Center (DKFZ).

But clumping does not necessarily mean the end of a protein’s life cycle. “Cells have repair systems for damaged proteins, so-called molecular chaperones, that can dissolve even aggregated proteins and refold them”, clarifies Dr. Axel Mogk, also a member of the ZMBH and DKFZ. The repair is carried out by a cooperating team of two chaperones, called Hsp70 and Hsp100. The Heidelberg researchers were able to demonstrate that the activity of the Hsp100 chaperone is regulated by a built-in molecular switch.

This switch is first positioned to curtail energy consumption, i.e. ATP hydrolysis, and thereby the activity of the Hsp100 chaperone. The cooperating Hsp70 protein changes the position of the switch and activates Hsp100 directly at the protein aggregate. In this state, the “motor” of the ring-shaped Hsp100 protein runs at full speed, reaches top performance and is able to extract individual chains from the aggregate. Afterwards, the extracted, unfolded protein can start the folding process over. The results of the Heidelberg research also show that the built-in switch’s control of Hsp100 activity is of vital importance for this complicated protein machine, because the loss of regulation in hyperactive, i.e. permanently activated, Hsp100 protein variants leads to cell death.

The research collaboration falls under the DKFZ-ZMBH Alliance, the strategic cooperation of the German Cancer Research Center and the Center for Molecular Biology of Heidelberg University. The Heidelberg Institute for Theoretical Studies (HITS) develops new theoretical approaches to interpreting the burgeoning amount of experimental data.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Scientific News
NIH Supports New Studies to Find Alzheimer’s Biomarkers in Down Syndrome
Initiative will track dementia onset, progress in Down syndrome volunteers.
Dementia Linked to Deficient DNA Repair
Mutant forms of breast cancer factor 1 (BRCA1) are associated with breast and ovarian cancers but according to new findings, in the brain the normal BRCA1 gene product may also be linked to Alzheimer’s disease.
How Cells ‘Climb’ to Build Fruit Fly Tracheas
Mipp1 protein helps cells sprout “fingers” for gripping.
A Cellular Symphony Responsible for Autoimmune Disease
Broad Institute researchers have used a novel approach to increase our understanding of the immune system as a whole.
Non-Disease Proteins Kill Brain Cells
Scientists at the forefront of cutting-edge research into neurodegenerative diseases such as Alzheimer’s and Parkinson’s have shown that the mere presence of protein aggregates may be as important as their form and identity in inducing cell death in brain tissue.
Closing the Loop on an HIV Escape Mechanism
Research team finds that protein motions regulate virus infectivity.
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Gut Microbes Signal to the Brain When They're Full
Don't have room for dessert? The bacteria in your gut may be telling you something.
Turning up the Tap on Microbes Leads to Better Protein Patenting
Mining millions of proteins could become faster and easier with a new technique that may also transform the enzyme-catalyst industry, according to University of California, Davis, researchers.
Exploring the Causes of Cancer
Queen's research to understand the regulation of a cell surface protein involved in cancer.
Scroll Up
Scroll Down
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos