Corporate Banner
Satellite Banner
Proteomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

New Hope for Understanding Autism Spectrum Disorders

Published: Friday, November 23, 2012
Last Updated: Friday, November 23, 2012
Bookmark and Share
Researchers at McGill University and the University of Montreal uncover a crucial link between protein synthesis and autism spectrum disorders.

Researchers from McGill University and the University of Montreal have identified a crucial link between protein synthesis and autism spectrum disorders (ASD), which can bolster new therapeutic avenues. Regulation of protein synthesis, also termed mRNA translation, is the process by which cells manufacture proteins. This mechanism is involved in all aspects of cell and organism function. A new study in mice has found that abnormally high synthesis of a group of neuronal proteins called neuroligins results in symptoms similar to those diagnosed in ASD. The study also reveals that autism-like behaviors can be rectified in adult mice with compounds inhibiting protein synthesis, or with gene-therapy targeting neuroligins. Their results are published in the journal Nature.

Autism spectrum disorders (ASD) encompass a wide array of neurodevelopmental diseases that affect three areas of behaviour: social interactions, communication and repetitive interests or behaviors. According to the U.S.-based Centers for Disease Control and Prevention, 1 in 88 children suffer from ASD, and the disorder is reported to occur in all racial, ethnic, and socioeconomic groups. ASDs are almost five times more common among boys (1 in 54) than among girls (1 in 252).

“My lab is dedicated to elucidating the role of dysregulated protein synthesis in cancer etiology. However, our team was surprised to discover that similar mechanisms may be implicated in the development of ASD”, explained Prof. Nahum Sonenberg, from McGill’s Dept. of Biochemistry, Faculty of Medicine, and the Goodman Cancer Research Centre. “We used a mouse model in which a key gene controlling initiation of protein synthesis was deleted. In these mice, production of neuroligins was increased. Neuroligins are important for the formation and regulation of connections known as synapses between neuronal cells in the brain and essential for the maintenance of the balance in the transmission of information from neuron to neuron.”
 
“Since the discovery of neuroligin mutations in individuals with ASD in 2003, the precise molecular mechanisms implicated remain unknown,” said Christos Gkogkas, a postdoctoral fellow at McGill and lead author. “Our work is the first to link translational control of neuroligins with altered synaptic function and autism-like behaviors in mice. The key is that we achieved reversal of ASD-like symptoms in adult mice. Firstly, we used compounds, which were previously developed for cancer treatment, to reduce protein synthesis. Secondly, we used non-replicating viruses as vehicles to put a break on exaggerated synthesis of neuroligins.”
 
Computer modeling played an important role in this research. “By using a new sophisticated computer algorithm that we specially developed to answer Dr. Sonenberg's questions, we identified the unique structures of mRNAs of the neuroligins that could be responsible for their specific regulation,” explained Prof. François Major, of the University of Montreal’s Institute for Research in Immunology and Cancer and Department of Computer Science.
 
The researchers found that dysregulated synthesis of neuroligins augments synaptic activity, resulting in an imbalance between excitation and inhibition in single brain cells, opening up exciting new avenues for research that may unlock the secrets of autism.
 
“The autistic behaviours in mice were prevented by selectively reducing the synthesis of one type of neuroligin and reversing the changes in synaptic excitation in cells,” explained Prof. Jean-Claude Lacaille at the University of Montreal’s Groupe de Recherche sur le Système Nerveux Central and Department of Physiology. “In short, we manipulated mechanisms in brain cells and observed how they influence the behaviour of the animal.” The researchers were also able to reverse changes in inhibition and augment autistic behaviors by manipulating a second neuroligin. “The fact that the balance can be affected suggests that there could be a potential for pharmacological intervention by targeting these mechanisms,” Lacaille concluded.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,100+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

3D Images of Enzymes May Lead to Improved Antibiotics
Research advances understanding of how crucial proteins function.
Friday, January 15, 2016
Newly Discovered Effects of Vitamin D on Cancer
Vitamin D slows the progression of cells from premalignant to malignant states, keeping their proliferation in check.
Wednesday, November 28, 2012
Study Reveals Major Genetic Differences between Blood and Tissue Cells
Important questions raised about genetic research based only on blood samples; new treatment in vascular disease foreseen at the same time.
Tuesday, July 21, 2009
Scientific News
Structure of Essential Digestive Enzyme Uncovered
Using a powerful combination of techniques from biophysics to mathematics, researchers have revealed new insights into the mechanism of a liver enzyme that is critical for human health.
Getting a Better Look at How HIV Infects and Takes Over its Host Cells
A new approach, developed by a team of researchers led by The Rockefeller University and The Aaron Diamond AIDS Research Center (ADARC), offers an unprecedented view of how a virus infects and appropriates a host cell, step by step.
Untangling Disease-Related Protein Misfolding
Work advances understanding of genetic forms of thrombosis, emphysema, cirrhosis of the liver, neurodegenerative diseases and inflammation, among others.
Scientists Find Evidence That Cancer Can Arise Changes
Researchers at Rockefeller University have found a mutation that affects the proteins that package DNA without changing the DNA itself can cause a rare form of cancer.
US-India Collab Finds Molecular Signatures of Severe Malaria
Study may be a significant advancement in understanding the causes of severe malaria.
Triple-Negative Breast Cancer Target Is Found
Researchers at UC Berkeley discover a target that drives cancer metabolism in triple-negative breast cancer.
Crucial Reaction for Vision Revealed
Scientists have tracked the reaction of a protein responding to light, paving the way for a new understanding of life's essential reactions.
Cancer Can Arise from Histone Mutations
A mutation that affects the proteins that package DNA—without changing the DNA itself—can cause a rare form of cancer.
Mimicking Evolution to Create Novel Proteins
A study by researchers in the Kuhlman lab offers a new route to design the 'cellular machines' needed to understand and battle diseases.
Can Gender Play A Role In Determining Cancer Treatment Choices?
MD Anderson study reveals “sex-biased” gene signatures in review of 13 cancer types.
Scroll Up
Scroll Down
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,100+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!