Corporate Banner
Satellite Banner
Proteomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

It Takes Two to Tangle: Wistar Scientists Further Unravel Telomere Biology

Published: Friday, November 23, 2012
Last Updated: Friday, November 23, 2012
Bookmark and Share
Chromosomes are capped at their ends with special DNA structures called telomeres and an assortment of proteins, which together act as a protective sheath.

Telomeres are maintained through the interactions between an enzyme, telomerase, and several accessory proteins. Researchers at The Wistar Institute have defined the structure of one of these critical proteins in yeast.

Understanding how telomeres keep chromosomes–and by extension, genomes–intact is an area of intense scientific focus in the fields of both aging and cancer. In aging, the DNA of telomeres eventually erodes faster than telomerase and its accessory proteins can maintain it, and cells die. In cancer, tumor cells hijack the process, subverting the natural method by which our bodies limit cell growth; cancer cells, then, can grow and multiply unchecked.

One of these accessory proteins, Cdc13, is integral to telomere maintenance and essential for cell viability in yeast, according to researchers at The Wistar Institute. In a study published in the journal Structure, available online now, a team of scientists led by Emmanuel Skordalakes, Ph.D., an associate professor in The Wistar Institute Cancer Center’s Gene Expression and Regulation Program, has determined how mutations in a particular region of Cdc13 can lead to defects in telomeres that could jeopardize DNA.

Cdc13 normally functions as a matched-set, where two copies of the protein form what is known as a dimer. Skordalakes found that mutations in a region of Cdc13 (called OB2) prevent Cdc13 copies from binding to each other. The findings help explain the biology of this key telomere maintenance protein, and may eventually lead to novel anticancer therapeutic if their findings translate to a similar molecular system used to maintain human telomeres, Skordalakes says.

“If we could target the OB2 region of Cdc13, for example, it would throw a wrench in the works of telomere maintenance,” said Skordalakes. “If you can disrupt recruitment of telomerase in humans, you could potentially drive cells to death.”

Cdc13 serves a dual function in telomere replication. First, it keeps the cells’ natural DNA repair mechanisms from mistaking the telomere for a broken stretch of DNA, which could cause genetic mayhem if such repair proteins fuse the ends of two chromosomes together, for example. Secondly, Cdc13 recruits telomerase and related proteins to place in order to lengthen the telomeres.

In yeast, telomeres are decorated by a multi-protein complex called CST, which contains the proteins Cdc13 (C), Stn1 (S), and Ten1 (T). Cdc13 is a key member of that complex and serves both to cap the telomere structure and recruit key enzymes.

Skordalakes’ newly determined structure demonstrates that, like three of the other four regions of Cdc13, OB2 adopts what is called an oligonucleotide/oligosaccharide-binding fold (OB). These folds normally allow proteins to bind DNA or sugars, but OB2 does neither; its crystal structure indicates that this fold actually forms a large binding surface that helps two Cdc13 proteins to form a dimeric complex.

The authors then used biochemical analyses to determine that OB2 also does not directly bind the protein Stn1. Nevertheless, full-length Cdc13 OB2 mutants deficient in dimerization are also deficient in Stn1 recruitment. When the team inserted strategic Cdc13 mutations into yeast, they found that the cells had abnormally long telomeres, probably as a result of disrupted CST complex assembly caused by impaired Cdc13 dimerization.

“The dimerization of OB2 is required for the proper assembly of the CST complex at the telomeres,” Skordalakes says. “When you disrupt oligomerization of this domain, you disrupt assembly of this complex, and thus regulation of telomere length.”

The study was funded by the Pennsylvania Department of Health, the V Foundation, the Emerald Foundation, the National Institutes of Health, and the National Institute on Aging.

Co-authors include Sandy Harper, David Schultz, Ph.D., and David Speicher, Ph.D., from The Wistar Institute; and Mark Mason, Jennifer Wanat, Ph.D., and F. Brad Johnson, M.D., Ph.D., from the University of Pennsylvania School of Medicine.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Wistar Scientists Decipher Structure of NatA, an Enzyme Complex that Modifies Most Human Proteins
A team of researchers has determined the structure of an enzyme complex that modifies one end of most human proteins and is made at elevated levels in numerous forms of cancer.
Wednesday, August 07, 2013
Scientific News
Lemon Juice and Human Norovirus
Citric acid may prevent the highly contagious norovirus from infecting humans, scientists discovered from the German Cancer Research Center.
Signature of Microbiomes Linked to Schizophrenia
Studying microbiomes in throat may help identify causes and treatments of brain disorder.
Structural Discoveries Could Aid in Better Drug Design
Scientists have uncovered the structural details of how some proteins interact to turn two different signals into a single integrated output.
Protein Found to Play a Key Role in Blocking Pathogen Survival
Calprotectin fends off microbial invaders by limiting access to iron, an important nutrient.
Study Identifies the Off Switch for Biofilm Formation
New discovery could help prevent the formation of infectious bacterial films on hospital equipment.
How DNA ‘Proofreader’ Proteins Pick and Edit Their Reading Material
Researchers from North Carolina State University and the University of North Carolina at Chapel Hill have discovered how two important proofreader proteins know where to look for errors during DNA replication and how they work together to signal the body’s repair mechanism.
Protein Found to Control Inflammatory Response
A new Northwestern Medicine study shows that a protein called POP1 prevents severe inflammation and, potentially, diseases caused by excessive inflammatory responses.
X-ray Laser Experiment Could Help in Designing Drugs for Brain Disorders
Scientists found that when two protein structures in the brain join up, they act as an amplifier for a slight increase in calcium concentration, triggering a gunshot-like release of neurotransmitters from one neuron to another.
Team Identifies Structure of Tumor-Suppressing Protein
An international group of researchers led by Carnegie Mellon University physicists Mathias Lösche and Frank Heinrich have established the structure of an important tumor suppressing protein, PTEN.
Why We’re Smarter Than Chickens
Toronto researchers have discovered that a single molecular event in our cells could hold the key to how we evolved to become the smartest animal on the planet.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!