Corporate Banner
Satellite Banner
Proteomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Newly Discovered Effects of Vitamin D on Cancer

Published: Wednesday, November 28, 2012
Last Updated: Wednesday, November 28, 2012
Bookmark and Share
Vitamin D slows the progression of cells from premalignant to malignant states, keeping their proliferation in check.

A team of researchers at McGill University have discovered a molecular basis for the potential cancer preventive effects of vitamin D. The team, led by McGill professors John White and David Goltzman, of the Faculty of Medicine’s Department of Physiology, discovered that the active form of vitamin D acts by several mechanisms to inhibit both the production and function of the protein cMYC. cMYC drives cell division and is active at elevated levels in more than half of all cancers. Their results are published in the latest edition of Proceedings of the National Academy of Sciences.

Although vitamin D can be obtained from limited dietary sources and directly from exposure to the sun during the spring and summer months, the combination of poor dietary intake and sun avoidance has created vitamin D deficiency or insufficiency in large proportions of many populations worldwide. It is known that vitamin D has a wide range of physiological effects and that correlations exist between insufficient amounts of vitamin D and an increased incidence of a number of cancers. These correlations are particularly strong for cancers of the digestive tract, including colon cancer, and certain forms of leukemia.

“For years, my lab has been dedicated to studying the molecular mechanisms of vitamin D in human cancer cells, particularly its role in stopping their proliferation,” said Prof. White. “We discovered that vitamin D controls both the rate of production and the degradation of cMYC. More importantly, we found that vitamin D strongly stimulates the production of a natural antagonist of cMYC called MXD1, essentially shutting down cMYC function”.

The team also applied vitamin D to the skin of mice and observed a drop in the level of cMYC and found evidence of a decrease in its function. Moreover, other mice, which lacked the specific receptor for vitamin D, were found to have strongly elevated levels of cMYC in a number of tissues including skin and the lining of the colon.

“Taken together, our results show that vitamin D puts the brakes on cMYC function, suggesting that it may slow the progression of cells from premalignant to malignant states and keep their proliferation in check. We hope that our research will encourage people to maintain adequate vitamin D supplementation and will stimulate the development of large, well-controlled cancer chemoprevention trials to test the effects of adequate supplementation,” said Dr. White.

This work was funded by the Canadian Institutes of Health Research and the National Cancer Institute/Canadian Cancer Society Research Institute.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More than 4,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

3D Images of Enzymes May Lead to Improved Antibiotics
Research advances understanding of how crucial proteins function.
Friday, January 15, 2016
New Hope for Understanding Autism Spectrum Disorders
Researchers at McGill University and the University of Montreal uncover a crucial link between protein synthesis and autism spectrum disorders.
Friday, November 23, 2012
Study Reveals Major Genetic Differences between Blood and Tissue Cells
Important questions raised about genetic research based only on blood samples; new treatment in vascular disease foreseen at the same time.
Tuesday, July 21, 2009
Scientific News
ASMS 2016: Targeting Mass Spectrometry Tools for the Masses
The expanding application range of MS in life sciences, food, energy, and health sciences research was highlighted at this year's ASMS meeting in San Antonio, Texas.
“Amazing Protein Diversity” Discovered in Maize
The genome of the corn plant – or maize, as it’s called almost everywhere except the US – “is a lot more exciting” than scientists have previously believed. So says the lead scientist in a new effort to analyze and annotate the depth of the plant’s genetic resources.
Proteins in Blood of Heart Disease Patients May Predict Adverse Events
Nine-protein test shown superior to conventional assessments of risk.
Self-Assembling Protein Shell for Drug Delivery
Made-to-order nano-cages open possibilities of shipping cargo into living cells or fashioning small chemical reactors.
Molecular Map Provides Clues To Zinc-Related Diseases
Mapping the molecular structure where medicine goes to work is a crucial step toward drug discovery against deadly diseases.
Nanoprobe Enables Measurement of Protein Dynamics in Living Cells
Mass. General and Harvard researchers use device to measure how anesthetic affects levels of Alzheimer's-associated proteins.
Diagnosing Systemic Infections Quickly, Reliably
Team develop rapid and specific diagnostic assay that could help physicians decide within an hour whether a patient has a systemic infection and should be hospitalized for aggressive intervention therapy.
What Makes a Good Scientist?
It’s the journey, not just the destination that counts as a scientist when conducting research.
A New Tool Brings Personalized Medicine Closer
Scientists from EPFL and ETHZ have developed a powerful tool for exploring and determining the inherent biological differences between individuals, which overcomes a major hurdle for personalized medicine.
Blood Test That Detects Early Alzheimer’s Disease
A research team, led by Dr. Robert Nagele from Rowan University School of Osteopathic Medicine and Durin Technologies, Inc., has announced the development of a blood test that leverages the body’s immune response system to detect an early stage of Alzheimer’s disease – referred to as the mild cognitive impairment (MCI) stage – with unparalleled accuracy.
Scroll Up
Scroll Down
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!