Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Researchers Identify Protein Key in Proliferation of Lymphoma Cells

Published: Thursday, November 29, 2012
Last Updated: Wednesday, November 28, 2012
Bookmark and Share
Inhibiting PERK protein could reduce formation of cancerous tumors.

A team of researchers from UCSF and the University of Pennsylvania has uncovered how a normal biological mechanism called the “unfolded protein response,” goes awry in human lymphoma - work that may lead to the development of specific drugs to fight different forms of cancer.

The unfolded protein response is something of a safety self-destruct valve - it protects against the potential toxicity of unfolded proteins by causing cells in which they accumulate to harmlessly implode. But during the development of lymphoma, it can also cause cells to proliferate.

Led by Davide Ruggero, PhD, a UCSF associate professor of urology, and Constantinos Koumenis, PhD, from the Perelman School of Medicine at the University of Pennsylvania, the team showed how the unfolded protein response works in patients with human lymphomas and mice genetically bred to develop lymphomas. Instead of pushing the cancer cells toward self-destruction, it nudges them toward survival.

The work, described in an article published online recently by the Journal of Clinical Investigation, provides researchers with potential new targets for new drugs to fight cancer.

Specifically, they identified a human protein called PERK, which plays a central role in unfolded protein response. They showed that inhibiting PERK reduces the formation of tumors.

The research team also uncovered a main contributor to PERK activation: the activity of a cancer-related gene called c-Myc, which paradoxically switches on both cell proliferation and death. When the cell becomes cancerous, c-Myc–induced death is bypassed, promoting tumor formation.

“A critical feature of c-Myc-overexpressing cells is an increased rate of protein synthesis that is essential for Myc’s ability to cause cancer,” says Tom Cunningham, PhD, a postdoctoral fellow in the Ruggero lab.

“Myc tumor cells use this aberrant production of proteins to block apoptosis [programmed cell death] and activate the unfolded protein response. These cancer cells depend on Myc-induced increases in protein abundance to survive,” said Ruggero.

Targeting protein synthesis downstream of Myc oncogenic activity may represent a promising new therapeutic window for cancer treatment, he added.

PERK is already an active target for drug design in academia and the pharmaceutical industry, but any drugs that are developed against it will have to undergo clinical trials for safety and effectiveness before they are approved by the U.S. Food and Drug Administration and commonly available as human patient therapies.

“Although data from our lab and other groups suggest that PERK inhibition in tumors grown in animals is feasible, other studies suggest that PERK plays a critical role in the function of secretory tissues such as the pancreas,” said Koumenis.

Koumenis continued, “Carefully testing the effects of new PERK inhibitors in animal models of lymphoma and other malignancies in the next couple of years should address this question and could open the way for new clinical trials with such agents.”

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Scientists Identify Key Biological Mechanism in Multiple Sclerosis
Imaging study finds potential new target to combat disease.
Tuesday, December 04, 2012
Well-Known Cell Protein Reveals New Tricks
Discovery of clathrin protein's key role in cell division could help understanding of cancer.
Wednesday, September 12, 2012
Scientific News
How Cell Growth Triggers Cell Division
Researchers in Jan Skotheim's lab have discovered a previously unknown mechanism that controls how large cells grow, an insight that could one day provide insight into attacking diseases such as cancer.
Probing the Forces Involved in Creating The Mitotic Spindle
Scientists at The Rockefeller University reveal new insights into the mechanical forces that govern elements of the mitotic spindle formation.
Identifying Cancer’s Food Sensors May Help to Halt Tumour Growth
Oxford University researchers have identified a protein used by tumours to help them detect food supplies. Initial studies show that targeting the protein could restrict cancerous cells’ ability to grow.
Specific Variations in RNA Splicing Linked to Breast Cancer
Researchers have identified cellular changes that may play a role in converting normal breast cells into tumors. Targeting these changes could potentially lead to therapies for some forms of breast cancer.
Thousands of Protein Interactions Identified
Thanks to the work by Utrecht University researcher Fan Liu and her colleagues, it is now possible to map the interactions between proteins in human cells.
Are Changes to Current Colorectal Cancer Screening Guidelines Required?
Editorial suggests more research is needed to pinpoint age to end aggressive screening.
Cell-Cell Repulsion Mystery Solved
University of Basel findings could be important for cancer research.
Assessing Cancer Patient Survival and Drug Sensitivity
RNA editing events another way to investigate biomarkers and therapy targets.
New Molecular Marker for Killer Cells
Cell marker enables prognosis about the course of infections.
Controlling Body Temperature in Response to 'Fight or Flight'
New research in The FASEB Journal suggests that blocking TRPV1 protein causes an increased release of noradrenaline, leading to an increase in core body temperatures.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos