Corporate Banner
Satellite Banner
Proteomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Researchers Synthesize a New Kind of Silk Fiber

Published: Thursday, November 29, 2012
Last Updated: Thursday, November 29, 2012
Bookmark and Share
Scientists find that music can help fine-tune the material’s properties.

Pound for pound, spider silk is one of the strongest materials known: Research by MIT’s Markus Buehler has helped explain that this strength arises from silk’s unusual hierarchical arrangement of protein building blocks.

Now Buehler — together with David Kaplan of Tufts University and Joyce Wong of Boston University — has synthesized new variants on silk’s natural structure, and found a method for making further improvements in the synthetic material.

And an ear for music, it turns out, might be a key to making those structural improvements.

The work stems from a collaboration of civil and environmental engineers, mathematicians, biomedical engineers and musical composers. The results are reported in a paper published in the journal Nano Today.

“We’re trying to approach making materials in a different way,” Buehler explains, “starting from the building blocks” — in this case, the protein molecules that form the structure of silk. “It’s very hard to do this; proteins are very complex.”

Other groups have tried to construct such protein-based fibers using a trial-and-error approach, Buehler says. But this team has approached the problem systematically, starting with computer modeling of the underlying structures that give the natural silk its unusual combination of strength, flexibility and stretchiness.

Buehler’s previous research has determined that fibers with a particular structure — highly ordered, layered protein structures alternating with densely packed, tangled clumps of proteins (ABABAB) — help to give silk its exceptional properties. For this initial attempt at synthesizing a new material, the team chose to look instead at patterns in which one of the structures occurred in triplets (AAAB and BBBA).

Making such structures is no simple task. Kaplan, a chemical and biomedical engineer, modified silk-producing genes to produce these new sequences of proteins. Then Wong, a bioengineer and materials scientist, created a microfluidic device that mimicked the spider’s silk-spinning organ, which is called a spinneret.

Even after the detailed computer modeling that went into it, the outcome came as a bit of a surprise, Buehler says. One of the new materials produced very strong protein molecules — but these did not stick together as a thread. The other produced weaker protein molecules that adhered well and formed a good thread. “This taught us that it’s not sufficient to consider the properties of the protein molecules alone,” he says. “Rather, [one must] think about how they can combine to form a well-connected network at a larger scale.”

The team is now producing several more variants of the material to further improve and test its properties. But one wrinkle in their process may provide a significant advantage in figuring out which materials will be useful and which ones won’t — and perhaps even which might be more advantageous for specific uses. That new and highly unusual wrinkle is music.

The different levels of silk’s structure, Buehler says, are analogous to the hierarchical elements that make up a musical composition — including pitch, range, dynamics and tempo. The team enlisted the help of composer John McDonald, a professor of music at Tufts, and MIT postdoc David Spivak, a mathematician who specializes in a field called category theory. Together, using analytical tools derived from category theory to describe the protein structures, the team figured out how to translate the details of the artificial silk’s structure into musical compositions.

The differences were quite distinct: The strong but useless material translated into music that was aggressive and harsh, Buehler says, while the one that formed usable fibers sounds much softer and more fluid.

Buehler hopes this can be taken a step further, using the musical compositions to predict how well new variations of the material might perform. “We’re looking for radically new ways of designing materials,” he says.

Combining materials modeling with mathematical and musical tools, Buehler says, could provide a much faster way of designing new biosynthesized materials, replacing the trial-and-error approach that prevails today. Genetically engineering organisms to produce materials is a long, painstaking process, he says, but this work “has taught us a new approach, a fundamental lesson” in combining experiment, theory and simulation to speed up the discovery process.

Materials produced this way — which can be done under environmentally benign, room-temperature conditions — could lead to new building blocks for tissue engineering or other uses, Buehler says: scaffolds for replacement organs, skin, blood vessels, or even new materials for use in civil engineering.

It may be that the complex structures of music can reveal the underlying complex structures of biomaterials found in nature, Buehler says. “There might be an underlying structural expression in music that tells us more about the proteins that make up our bodies. After all, our organs — including the brain — are made from these building blocks, and humans’ expression of music may inadvertently include more information that we are aware of.”

“Nobody has tapped into this,” he says, adding that with the breadth of his multidisciplinary team, “We could do this — making better bio-inspired materials by using music, and using music to better understand biology.”


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Protein Found to Play a Key Role in Blocking Pathogen Survival
Calprotectin fends off microbial invaders by limiting access to iron, an important nutrient.
Wednesday, August 26, 2015
Real-Time Data for Cancer Therapy
Biochemical sensor implanted at initial biopsy could allow doctors to better monitor and adjust cancer treatments.
Thursday, August 06, 2015
Bacterial Computing
The “friendly” bacteria inside our digestive systems are being given an upgrade, which may one day allow them to be programmed to detect and ultimately treat diseases such as colon cancer and immune disorders.
Monday, July 13, 2015
New Approach to Global Health Challenges
MIT’s Institute for Medical Engineering and Science brings many tools to the quest for new disease treatments and diagnostic devices.
Friday, September 27, 2013
Why Tumors Become Drug-Resistant
New findings could lead to drugs that fight back when tumors don’t respond to treatment.
Monday, August 12, 2013
Reducing Caloric Intake Delays Nerve Cell Loss
Study points to role of protein in anti-aging benefits of calorie restriction.
Thursday, May 23, 2013
Study IDs Key Protein for Cell Death
Findings may offer a new way to kill cancer cells by forcing them into an alternative programmed-death pathway.
Tuesday, May 14, 2013
Device Finds Stray Cancer Cells in Patients’ Blood
A microfluidic device that captures circulating tumor cells could give doctors a noninvasive way to diagnose and track cancers.
Wednesday, April 10, 2013
Sorting out the Structure of a Parkinson’s Protein
Computer modeling may resolve conflicting results and offer hints for new drug-design strategies.
Tuesday, April 02, 2013
New Technology May Enable Earlier Cancer Diagnosis
Nanoparticles amplify tumor signals, making them much easier to detect in the urine.
Friday, December 21, 2012
Evolution: It’s All in How You Splice It
MIT biologists find that alternative splicing of RNA rewires signaling in different tissues and may often contribute to species differences.
Friday, December 21, 2012
New Injectable Gels Toughen up after Entering the Body
These more durable gels could find applications in drug delivery and tissue engineering.
Friday, November 16, 2012
A Step Toward Stronger Polymers
Counting loops that weaken materials could help researchers eliminate structural flaws.
Tuesday, November 06, 2012
A New Glow for Electron Microscopy
Protein-labeling technique allows high-resolution visualization of molecules inside cells.
Monday, October 22, 2012
Oscillating Microscopic Beads Could be Key to Biolab on a Chip
MIT team finds way to manipulate and measure magnetic particles without contact, potentially enabling multiple medical tests on a tiny device.
Tuesday, September 25, 2012
Scientific News
Cellular Contamination Pathway for Heavy Elements Identified
Berkeley Lab scientists find that an iron-binding protein can transport actinides into cells.
Lemon Juice and Human Norovirus
Citric acid may prevent the highly contagious norovirus from infecting humans, scientists discovered from the German Cancer Research Center.
Signature of Microbiomes Linked to Schizophrenia
Studying microbiomes in throat may help identify causes and treatments of brain disorder.
Structural Discoveries Could Aid in Better Drug Design
Scientists have uncovered the structural details of how some proteins interact to turn two different signals into a single integrated output.
Protein Found to Play a Key Role in Blocking Pathogen Survival
Calprotectin fends off microbial invaders by limiting access to iron, an important nutrient.
Study Identifies the Off Switch for Biofilm Formation
New discovery could help prevent the formation of infectious bacterial films on hospital equipment.
How DNA ‘Proofreader’ Proteins Pick and Edit Their Reading Material
Researchers from North Carolina State University and the University of North Carolina at Chapel Hill have discovered how two important proofreader proteins know where to look for errors during DNA replication and how they work together to signal the body’s repair mechanism.
Protein Found to Control Inflammatory Response
A new Northwestern Medicine study shows that a protein called POP1 prevents severe inflammation and, potentially, diseases caused by excessive inflammatory responses.
X-ray Laser Experiment Could Help in Designing Drugs for Brain Disorders
Scientists found that when two protein structures in the brain join up, they act as an amplifier for a slight increase in calcium concentration, triggering a gunshot-like release of neurotransmitters from one neuron to another.
Team Identifies Structure of Tumor-Suppressing Protein
An international group of researchers led by Carnegie Mellon University physicists Mathias Lösche and Frank Heinrich have established the structure of an important tumor suppressing protein, PTEN.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!