Corporate Banner
Satellite Banner
Proteomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Penn-Temple Team Discovers What Keeps a Cell's Energy Source Going

Published: Friday, November 30, 2012
Last Updated: Friday, November 30, 2012
Bookmark and Share
Most healthy cells rely on a complicated process to produce the fuel ATP, understanding it’s production is important for understanding cancers.

Knowing how ATP is produced by the cell’s energy storehouse – the mitochondria -- is important for understanding a cell’s normal state, as well as what happens when things go wrong, for example in cancer, cardiovascular disease, neurodegeneration, and many rare disorders of the mitochondria.

Two years ago, Kevin Foskett, PhD, professor of Physiology at the Perelman School of Medicine, University of Pennsylvania, and colleagues discovered that fundamental control of ATP production is an ongoing shuttle of calcium to the mitochondria from another cell compartment. They found that mitochondria rely on this transfer to make enough ATP to support normal cell metabolism.

Foskett’s lab and the lab of colleague Muniswamy Madesh, PhD, at Temple University, discovered last month an essential mechanism that regulates the flow of calcium into mitochondria, described in the October 26 issue of Cell. They found that the mitochondrial protein MICU1 is required to establish the proper level of calcium uptake under normal conditions.

In a new paper out this week in Nature Cell Biology, the same Penn-Temple team describe a new protein and its function. Like MICU1, this new protein, MCUR1, interacts physically with MCU, the uniporter calcium ion channel within the mitochondria. Calcium uptake is driven by a voltage across the inner mitochondrial membrane and mediated by the calcium-selective ion channel called the uniporter.

“But this newly described protein, MCUR1, has the opposite role as MICU1,” notes Foskett. “It seems to be a subunit that, together with MCU, is required for a functional uniporter calcium channel.”

Many cell plasma membrane ion channels also have subunits that are required for those channels to work. Before this paper, there was no realization that this mitochondrial channel, MCU, did as well.

Maintaining the correct levels of calcium in the mitochondria plays an important role in cellular physiology: Calcium flux across the inner mitochondrial membrane regulates cell energy production and activation of cell-death pathways, for example. In MICU1’s absence mitochondria become overloaded with calcium, generating excessive amounts of reactive oxygen molecules and eventually cell death. In contrast, in the absence of MCUR1, mitochondria cannot take up enough calcium. This also has detrimental effects: the cells cannot make enough ATP and they activate autophagy, a mechanism in which cells “eat themselves” to provide sufficient nutrients for survival.

Both papers deal with the function of the uniporter, the calcium channel in the inner membrane of mitochondria that lets calcium get into the mitochondrial matrix where it can do good things like promote ATP synthesis and healthy bioenergetics, or bad things, like mitochondrial-mediated cell death, apoptosis and necrosis.

Because of these two papers, the uniporter is now recognized as a channel complex, containing -- at least -- MCU, MCUR1 and MICU1. Since the uniporter can be a therapeutic target is reperfusion injury, ischemic injury, and programmed cell death, MCUR1 and its interaction with MCU are now targets for drug development.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Study Identifies Potential Treatment Target for Cocaine Addiction
Small change in receptor subunit reduces cocaine seeking in an animal model of addiction.
Thursday, October 30, 2014
Study Confirms No Transmission of Alzheimer's Proteins between Humans
No evidence to show that proteins can spread around within the brain or between animals and humans.
Wednesday, February 06, 2013
Changes to DNA On-Off Switches Affect Cells' Ability to Repair Breaks
Many proteins are involved in everyday DNA repair, but if they are mutated, the repair system breaks down and cancer can occur.
Wednesday, February 06, 2013
Scientific News
Mass Spec Technology Drives Innovation Across the Biopharma Workflow
With greater resolving power, analytical speed, and accuracy, new mass spectrometry technology and techniques are infiltrating the biopharmaceuticals workflow.
One Step Closer to Precision Medicine for Chronic Lung Disease Sufferers
A study led by University of North Carolina at Chapel Hill, and National Jewish Health, has provided evidence of links between SNPs and known COPD blood protein biomarkers.
Peer Reviewed Study Demonstrates Mass Spec Technique
The peer reviewed study demonstrates MS workflow, TMTCalibrator workflow, which dramatically enhances detection of key early stage Alzheimer’s biomarkers.
Enhancing Antibiotics to Defeat Resistant Bacteria
Scientists enhance ability of antibiotics to defeat resistant types of bacteria using molecules called PPMOs
Disordered Protein 'Shape Shifts' to Avoid Crowding
Study suggests disordered protein escapes from the cell membrane when it runs out of space.
Hyperstable Peptides for 'On-Demand' Drugs
These small molecules can fold into different conformations that could allow for greater flexibility in precision drug design
Antibodies Block Norovirus’ Entrance into Cells
Scientists have uncovered a mechanism in the human body that targets and successfully blocks noroviruses.
Cancer's Taste for Fat
Researchers discovered signalling pathway for fat burning is disrupted in certain cancers.
Space Research Fighting Cancer
JPL and National Cancer Institute renew Big Data partnership that 'learns' data similarities.
"Pac-man Protein" May Aid the Fight Against Cancer
Scientists at the University of Sheffield have identified a protein which causes cells to eat their dying neighbours, helping to prevent inflammation – something which is vital in the fight to stop cancer spreading.
Scroll Up
Scroll Down
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!