Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Scientists Identify Key Biological Mechanism in Multiple Sclerosis

Published: Tuesday, December 04, 2012
Last Updated: Tuesday, December 04, 2012
Bookmark and Share
Imaging study finds potential new target to combat disease.

Scientists at the Gladstone Institutes have defined for the first time a key underlying process implicated in multiple sclerosis (MS) - a disease that causes progressive and irreversible damage to nerve cells in the brain and spinal cord.

This discovery offers new hope for the millions who suffer from this debilitating disease for which there is no cure.

Researchers in the laboratory of Gladstone Investigator Katerina Akassoglou, PhD, a professor in neurology at UCSF, have identified in animal models precisely how a protein that seeps from the blood into the brain sets off a response that, over time, causes the nerve cell damage that is a key indicator of MS.

These findings, which are reported in the latest issue of Nature Communications, lay the groundwork for much-needed therapies to treat this disease.

MS, which afflicts more than two million people worldwide, develops when the body’s immune system attacks the brain. This attack damages nerve cells, leading to a host of symptoms including numbness, fatigue, difficulty walking, paralysis and loss of vision. While some drugs can delay these symptoms, they do not treat the disease’s underlying cause - which researchers are only just beginning to understand.

“To successfully treat MS, we must first identify what triggers the disease and what enables its progression,” said Akassoglou, who also directs the Gladstone Center for In Vivo Imaging Research. “Here, we have shown that the leakage of blood in the brain acts as an early trigger that sets off the brain’s inflammatory response - creating a neurotoxic environment that damages nerve cells.”

Akassoglou and her team reached this conclusion by using advanced imaging techniques to monitor the disease’s progression in the brain and spinal cord of mice modified to mimic the signs of MS.

Traditional techniques only show “snapshots” of the disease’s pathology. However, this analysis allows researchers to study individual cells within the living brain - and to monitor in real-time what happens to these cells as the disease worsens over time.

“In vivo imaging analysis let us observe in real-time which molecules crossed the blood-brain barrier,” said Dimitrios Davalos, PhD, Gladstone staff research scientist, associate director of the imaging center and the paper’s lead author. “Importantly, this analysis helped us identify the protein fibrinogen as the key culprit in MS, by demonstrating how its entry into the brain through leaky blood vessels impacted the health of individual nerve cells.”

Fibrinogen, a blood protein that is involved in coagulation, is not found in the healthy brain. In vivo imaging over different stages of disease revealed, however, that a disruption in the blood-brain barrier allows blood proteins - and specifically fibrinogen - to seep into the brain.

Microglia - immune cells that act as the brain’s first line of defense - initiate a rapid response to fibrinogen’s arrival. They release large amounts of chemically reactive molecules called ‘reactive oxygen species.’ This creates a toxic environment within the brain that damages nerve cells and eventually leads to the debilitating symptoms of MS.

Importantly, the team found a strategy to halt this process by genetically modifying fibrinogen in the animal models. This strategy disrupted the protein’s interaction with the microglia without affecting fibrinogen’s essential role as a blood coagulant.

In these models, the microglia did not react to fibrinogen’s arrival and did not create a toxic environment. As a result, the mice failed to show the type of progressive nerve cell damage seen in MS.

“Dr. Akassoglou’s work reveals a novel target for treating MS - which might protect nerve cells and allow early intervention in the disease process,” said Ursula Utz, PhD, MBA, a program director at the National Institutes of Health’s National Institute of Neurological Disorders and Stroke, which provided funding for this research.

“Indeed, targeting the fibrinogen-microglia interactions to halt nerve-cell damage could be a new therapeutic strategy,” said Akassoglou. “At present we are working to develop new approaches that specifically target the damaging effects of fibrinogen in the brain. We also continue to use in vivo imaging techniques to further enhance our understanding of what triggers the initiation and progression of MS.”

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,700+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Researchers Identify Protein Key in Proliferation of Lymphoma Cells
Inhibiting PERK protein could reduce formation of cancerous tumors.
Thursday, November 29, 2012
Well-Known Cell Protein Reveals New Tricks
Discovery of clathrin protein's key role in cell division could help understanding of cancer.
Wednesday, September 12, 2012
Scientific News
Analyzing Protein Structures in Their Native Environment
Enhanced-sensitivity NMR could reveal new clues to how proteins fold.
Biomarker Predicting Transplant Complications May be Key to Treating Them
A protein that can be used to predict if a stem cell transplant patient will suffer severe complications may also be the key to preventing those complications, an international research team based at the Indiana University School of Medicine reported Wednesday.
New Protein Cleanup Factors Found to Control Bacterial Growth
UMass Amherst researchers characterize previously mysterious proteolysis factors.
Proteins with ALS, Cancer Role Do Not Assume a Regular Shape
Our cells contain proteins, essential to functions like protein creation and DNA repair but also involved in forms of ALS and cancer, that never take a characteristic shape, a new study shows.
Key to Natural Detoxifier’s Reactivity Discovered
Results have implications for health, drug design and chemical synthesis.
New Protein Found in Immune Cells
Immunobiologists from the University of Freiburg discover Kidins220/ARMS in B cells and demonstrate its functions.
Cell's Waste Disposal System Regulates Body Clock Proteins
New way to identify interacting proteins could identify potential drug targets.
How a Molecular Motor Untangles Protein
Diseases such as Alzheimer’s, Parkinson’s and prion diseases, all involve “tangled” proteins.
Compound Doubles Up On Cancer Detection
Researchers have found that tagging a pair of markers found almost exclusively on a common brain cancer yields a cancer signal that is both more obvious and more specific to cancer.
How Cell Growth Triggers Cell Division
Researchers in Jan Skotheim's lab have discovered a previously unknown mechanism that controls how large cells grow, an insight that could one day provide insight into attacking diseases such as cancer.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,700+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos