Corporate Banner
Satellite Banner
Proteomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Fragile X Protein Linked to Nearly 100 Genes Involved in Autism

Published: Tuesday, December 18, 2012
Last Updated: Tuesday, December 18, 2012
Bookmark and Share
Patients with fragile X syndrome, the most common form of inherited intellectual disability, are often also diagnosed with autism. But little has been known about how the two diagnoses are related.

Now a collaborative research effort at Duke University Medical Center and Rockefeller University has pinpointed the precise genetic footprint that links the two. The findings point the way toward new genetic testing that could more precisely diagnose and categorize the spectrum of autism-related disorders.

Fragile X syndrome is the most well understood single-gene cause of autism. It results from defects on a small part of the genetic code for a protein that researchers have dubbed the fragile X mental retardation protein, or FMRP.

Normally, FMRP plays an important role controlling production of other proteins in the brain and other organs. It does this by looking for specific genetic patterns located on the messages encoding proteins. When it locates these genetic flags, it attaches to them and, along with other signals, controls where and when protein is made.

In fragile X syndrome, this process breaks down because a defect in the gene causes the body to produce too little, or in some cases, none of the FMRP protein. As a result, additional proteins it would normally regulate are made in the wrong place and at the wrong time. Until now, little was known about how this process worked in people with the autism.

Using a combination of laboratory experiments and advanced bioinformatics, the research team, led by Thomas Tuschl, PhD, a Howard Hughes Medical Institute investigator at Rockefeller University, and Uwe Ohler, PhD, an associate professor in Biostatistics and Bioinformatics at the Duke Institute for Genome Sciences & Policy, identified both the genetic flags that FMRP is looking for and the genes it targets.

The researchers discovered that FMRP directly controls at least 93 genes that have been independently linked to autism, as well as Angelman, Prader-Willi, Rett and other neurologic syndromes that have overlapping features with autism.

Additional research using a mouse model of fragile X syndrome revealed that the animals had abnormal protein production not only in the brain, but also in the ovary. The findings confirmed that the absence of FMRP protein causes ovarian insufficiency, which is common among women affected by fragile x syndrome.

“We now know not only which genes are linked to FMRP, but we can locate exactly where they interact,” said Ohler. “Down the road, this finding could lead to more detailed genetic tests that take into account the subtle ways that genes get turned on and off.”

Physicians who work with fragile X patients know that each patient’s abilities and challenges are unique. Some individuals have almost no disability, while others have more severe physical and intellectual disabilities. Approximately 2 percent to 6 percent of children with autism are also diagnosed with fragile X and about one-third of fragile X patients also meet the criteria for autism.

The new discovery should now enable researchers to examine the common molecular pathways leading to all forms of autism. Identification of those pathways could also lead to more targeted treatments for both fragile x and autism.

“We can now look for changes in the FMRP binding sites of genes to identify potential new genetic links to autism-spectrum disorders,” said Neelanjan Mukherjee, a Duke post-doctoral scientist who contributed to the research.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Retractable Protein Nanoneedles
The ability to control the transfer of molecules through cellular membranes is an important function in synthetic biology; a new study from researchers at Harvard’s Wyss Institute for Biologically Inspired Engineering and Harvard Medical School (HMS) introduces a novel mechanical method for controlling release of molecules inside cells.
A Crystal Clear View of Biomolecules
Fundamental discovery triggers paradigm shift in crystallography.
Charting Kidney Cancer Metabolism
Changes in cell metabolism are increasingly recognized as an important way tumors develop and progress, yet these changes are hard to measure and interpret. A new tool designed by MSK scientists allows users to identify metabolic changes in kidney cancer tumors that may one day be targets for therapy.
"Dark Side" of the Transcriptome
New approach to quantifying gene "read-outs" reveals important variations in protein synthesis and has implications for understanding neurodegenerative diseases.
Advancing Synthetic Biology
Living systems rely on a dizzying variety of chemical reactions essential to development and survival. Most of these involve a specialized class of protein molecules — the enzymes.
Structure of Brain Plaques in Huntington's
Researchers at the University of Pittsburgh School of Medicine have shown that the core of the protein clumps found in the brains of people with Huntington's disease have a distinctive structure, a finding that could shed light on the molecular mechanisms underlying the neurodegenerative disorder.
Visualizing a Cancer Drug Target at Atomic Resolution
Using cryo-electron microscopy, researchers were able to view, in atomic detail, the binding of a potential small molecule drug to a key protein in cancer cells.
Pumpjack" Mechanism for Splitting and Copying DNA
High-resolution structural details of cells' DNA-replicating proteins offer new insight into how these molecular machines function
The Power of Three
Overlooked portion of cell “death receptor” critical in some cancers, autoimmune diseases.
Biomarker for Recurring HPV-Linked Oropharyngeal Cancers
A look-back analysis of HPV infection antibodies in patients treated for oropharyngeal (mouth and throat) cancers linked to HPV infection suggests at least one of the antibodies could be useful in identifying those at risk for a recurrence of the cancer, say scientists at the Johns Hopkins University.
Scroll Up
Scroll Down
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!