Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Fragile X Protein Linked to Nearly 100 Genes Involved in Autism

Published: Tuesday, December 18, 2012
Last Updated: Tuesday, December 18, 2012
Bookmark and Share
Patients with fragile X syndrome, the most common form of inherited intellectual disability, are often also diagnosed with autism. But little has been known about how the two diagnoses are related.

Now a collaborative research effort at Duke University Medical Center and Rockefeller University has pinpointed the precise genetic footprint that links the two. The findings point the way toward new genetic testing that could more precisely diagnose and categorize the spectrum of autism-related disorders.

Fragile X syndrome is the most well understood single-gene cause of autism. It results from defects on a small part of the genetic code for a protein that researchers have dubbed the fragile X mental retardation protein, or FMRP.

Normally, FMRP plays an important role controlling production of other proteins in the brain and other organs. It does this by looking for specific genetic patterns located on the messages encoding proteins. When it locates these genetic flags, it attaches to them and, along with other signals, controls where and when protein is made.

In fragile X syndrome, this process breaks down because a defect in the gene causes the body to produce too little, or in some cases, none of the FMRP protein. As a result, additional proteins it would normally regulate are made in the wrong place and at the wrong time. Until now, little was known about how this process worked in people with the autism.

Using a combination of laboratory experiments and advanced bioinformatics, the research team, led by Thomas Tuschl, PhD, a Howard Hughes Medical Institute investigator at Rockefeller University, and Uwe Ohler, PhD, an associate professor in Biostatistics and Bioinformatics at the Duke Institute for Genome Sciences & Policy, identified both the genetic flags that FMRP is looking for and the genes it targets.

The researchers discovered that FMRP directly controls at least 93 genes that have been independently linked to autism, as well as Angelman, Prader-Willi, Rett and other neurologic syndromes that have overlapping features with autism.

Additional research using a mouse model of fragile X syndrome revealed that the animals had abnormal protein production not only in the brain, but also in the ovary. The findings confirmed that the absence of FMRP protein causes ovarian insufficiency, which is common among women affected by fragile x syndrome.

“We now know not only which genes are linked to FMRP, but we can locate exactly where they interact,” said Ohler. “Down the road, this finding could lead to more detailed genetic tests that take into account the subtle ways that genes get turned on and off.”

Physicians who work with fragile X patients know that each patient’s abilities and challenges are unique. Some individuals have almost no disability, while others have more severe physical and intellectual disabilities. Approximately 2 percent to 6 percent of children with autism are also diagnosed with fragile X and about one-third of fragile X patients also meet the criteria for autism.

The new discovery should now enable researchers to examine the common molecular pathways leading to all forms of autism. Identification of those pathways could also lead to more targeted treatments for both fragile x and autism.

“We can now look for changes in the FMRP binding sites of genes to identify potential new genetic links to autism-spectrum disorders,” said Neelanjan Mukherjee, a Duke post-doctoral scientist who contributed to the research.

Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,100+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Scientific News
Integrated Omics Analysis
Studying multi-omics promises to give a more holistic picture of the organism and its place in its ecosystem, however despite the complexities involved those within the field are optimistic.
Mass Spec Technology Drives Innovation Across the Biopharma Workflow
With greater resolving power, analytical speed, and accuracy, new mass spectrometry technology and techniques are infiltrating the biopharmaceuticals workflow.
NIH Study Determines Key Differences between Allergic and Non-Allergic Dust Mite Proteins
Researchers at NIH have uncovered factors that lead to the development of dust mite allergy and assist in the design of better allergy therapies.
Study Finds Key Regulator in Pulmonary Fibrosis
Researchers identify an enzyme that could open the way to therpies for chronic fatal lung disease.
Alzheimer’s-Linked Protein May Play Role in Schizophrenia
Researchers suggests a protein linked to cognitive decline in Alzheimer's also plays a role in genetic predisposition to schizophrenia.
Peptides vs. Superbugs
Scientists successfully develop a shuttle system made of liquid-crystalline nanomaterials that protect peptites.
Cocoa Compound Linked to Some Cardiovascular Biomarker Improvements
The study highlights the urgent need for large, long-term RCTs that improve understanding of how the short-term benefits of cocoa flavanol intake on cardiometabolic biomarkers may be translated into clinical outcomes.
Immune Approach Targets Humans Instead of Bacteria
Scientists show for the first time how bacterial superantigen toxins work, and how short peptides can block them and save lives.
Could 2D Mass Spec Breakthrough Lead to Medical Revolution?
Pharmaceutical research could be quicker and more precise, thanks to an innovative breakthrough in 2D mass spec from the University of Warwick.
Less is More in Ribosome Assembly
Research uncovers genetic "program" that allows for ribosome formation with a limited supply of magnesium.
Scroll Up
Scroll Down
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,100+ scientific videos