Corporate Banner
Satellite Banner
Proteomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Evolution: It’s All in How You Splice It

Published: Friday, December 21, 2012
Last Updated: Friday, December 21, 2012
Bookmark and Share
MIT biologists find that alternative splicing of RNA rewires signaling in different tissues and may often contribute to species differences.

When genes were first discovered, the canonical view was that each gene encodes a unique protein. However, biologists later found that segments of genes can be combined in different ways, giving rise to many different proteins.

This phenomenon, known as alternative RNA splicing, often alters the outputs of signaling networks in different tissues and may contribute disproportionately to differences between species, according to a new study from MIT biologists.

After analyzing vast amounts of genetic data, the researchers found that the same genes are expressed in the same tissue types, such as liver or heart, across mammalian species. However, alternative splicing patterns — which determine the segments of those genes included or excluded — vary from species to species.

“The core things that make a heart a heart are mostly determined by a heart-specific gene expression signature. But the core things that make a mouse a mouse may disproportionately derive from splicing patterns that differ from those of rats or other mammals” says Chris Burge, an MIT professor of biology and biological engineering, and senior author of a paper on the findings in the Dec. 20 online edition of Science.

Lead author of the paper is MIT biology graduate student Jason Merkin. Other authors are Caitlin Russell, a former technician in Burge’s lab, and Ping Chen, a visiting grad student at MIT.

A variety of proteins

Alternative RNA splicing (a discovery for which MIT Institute Professor Phillip Sharp shared the 1993 Nobel Prize in medicine or physiology), controls the composition of proteins encoded by a gene. In mammals, genes — made of DNA stored in the cell nucleus — consist of many short segments known as exons and introns. After the DNA is copied into an RNA transcript, all introns and frequently some exons are excised before the messenger RNA (mRNA) leaves the nucleus, carrying instructions to make a specific protein.

This process allows cells to create a much wider variety of proteins than would be possible if each gene encoded only one protein. Some proteins, including Dscam in fruit flies and neurexin in humans, have thousands of alternate forms. These variant proteins can have vastly different functions, Burge says. For example, the full version of a protein may bind to DNA at one end and activate DNA transcription at the other end. If an alternatively spliced form is missing the activation section, it will compete for binding to the same DNA regions as the full-length protein, preventing activation of transcription.

In 2008, Burge and colleagues analyzed mRNA from 10 different human tissues, publishing their results in Nature, and found that nearly every gene is alternatively spliced. Furthermore, most alternative splicing was found to differ among tissues.

In the new study, the researchers compared tissues from several different mammalian species — the rhesus monkey, rat, mouse and cow — as well as one species of bird, the chicken. For each species, the researchers analyzed nine types of tissue (brain, colon, heart, kidney, liver, lung, muscle, spleen and testes) from three individuals, sequencing more than a trillion bases of mRNA.

Using new high-speed sequencing technology, the researchers analyzed both gene expression and alternative splicing patterns in each tissue sample. They found that gene expression patterns were extremely similar across tissues, no matter what species the tissue came from. That is, the genes active in kidney tissue from rats were nearly identical to those turned on in cows’ kidney tissue.

“That was not a big surprise,” Burge says. “It’s consistent with the idea that the gene expression pattern actually determines the identify of the tissue. You need to express certain structural and motor proteins if you’re a muscle cell, and if you’re a neuron you have to express certain synaptic proteins.”

The results from the alternative splicing pattern comparison were very different. Instead of clustering by tissue, the patterns clustered mostly by species. “Different tissues from the cow look more like the other cow tissues, in terms of splicing, than they do like the corresponding tissue in mouse or rat or rhesus,” Burge says.

Because splicing patterns are more specific to each species, it appears that splicing may contribute preferentially to differences between those species, Burge says. “Splicing seems to be more malleable over shorter evolutionary timescales, and may contribute to making species different from one another and helping them adapt in various ways,” he says.

The new study is the first large-scale effort to look at the role of alternative splicing in evolution, says Brenton Graveley, a professor of genetics and developmental biology at the University of Connecticut Health Center. “It provides a lot of new insight into the potential role of alternative splicing in driving differences between species,” says Graveley, who was not involved in this study.

New functions

The researchers also found that a major function of alternative splicing is the addition and deletion of short protein segments that contain one or more phosphorylation sites. Phosphorylation (addition of a phosphate molecule) is a very common way for cells to activate or deactivate proteins.

When a variant form of a protein lacks a key phosphorylation site, it may lose the function of the original form. Phosphorylation can also direct proteins to different locations within the cell, which may alter their function.

Changes in splicing patterns also help to modify the signaling networks that regulate most cellular activity. These networks are often controlled by phosphorylation of proteins involved in the network, many of which can be alternatively spliced. “You can think about it as rewiring signaling networks so they control different outputs. Splicing can add a new output or delete it in a tissue-specific way,” Burge says.

The researchers also identified several thousand new alternative exons in each species, and are now studying how these exons evolved and exploring their potential functions.

The research was funded by a Broad Institute SPARC grant, the National Institutes of Health and the National Science Foundation.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Protein Found to Play a Key Role in Blocking Pathogen Survival
Calprotectin fends off microbial invaders by limiting access to iron, an important nutrient.
Wednesday, August 26, 2015
Real-Time Data for Cancer Therapy
Biochemical sensor implanted at initial biopsy could allow doctors to better monitor and adjust cancer treatments.
Thursday, August 06, 2015
Bacterial Computing
The “friendly” bacteria inside our digestive systems are being given an upgrade, which may one day allow them to be programmed to detect and ultimately treat diseases such as colon cancer and immune disorders.
Monday, July 13, 2015
New Approach to Global Health Challenges
MIT’s Institute for Medical Engineering and Science brings many tools to the quest for new disease treatments and diagnostic devices.
Friday, September 27, 2013
Why Tumors Become Drug-Resistant
New findings could lead to drugs that fight back when tumors don’t respond to treatment.
Monday, August 12, 2013
Reducing Caloric Intake Delays Nerve Cell Loss
Study points to role of protein in anti-aging benefits of calorie restriction.
Thursday, May 23, 2013
Study IDs Key Protein for Cell Death
Findings may offer a new way to kill cancer cells by forcing them into an alternative programmed-death pathway.
Tuesday, May 14, 2013
Device Finds Stray Cancer Cells in Patients’ Blood
A microfluidic device that captures circulating tumor cells could give doctors a noninvasive way to diagnose and track cancers.
Wednesday, April 10, 2013
Sorting out the Structure of a Parkinson’s Protein
Computer modeling may resolve conflicting results and offer hints for new drug-design strategies.
Tuesday, April 02, 2013
New Technology May Enable Earlier Cancer Diagnosis
Nanoparticles amplify tumor signals, making them much easier to detect in the urine.
Friday, December 21, 2012
Researchers Synthesize a New Kind of Silk Fiber
Scientists find that music can help fine-tune the material’s properties.
Thursday, November 29, 2012
New Injectable Gels Toughen up after Entering the Body
These more durable gels could find applications in drug delivery and tissue engineering.
Friday, November 16, 2012
A Step Toward Stronger Polymers
Counting loops that weaken materials could help researchers eliminate structural flaws.
Tuesday, November 06, 2012
A New Glow for Electron Microscopy
Protein-labeling technique allows high-resolution visualization of molecules inside cells.
Monday, October 22, 2012
Oscillating Microscopic Beads Could be Key to Biolab on a Chip
MIT team finds way to manipulate and measure magnetic particles without contact, potentially enabling multiple medical tests on a tiny device.
Tuesday, September 25, 2012
Scientific News
Cellular Contamination Pathway for Heavy Elements Identified
Berkeley Lab scientists find that an iron-binding protein can transport actinides into cells.
Lemon Juice and Human Norovirus
Citric acid may prevent the highly contagious norovirus from infecting humans, scientists discovered from the German Cancer Research Center.
Signature of Microbiomes Linked to Schizophrenia
Studying microbiomes in throat may help identify causes and treatments of brain disorder.
Structural Discoveries Could Aid in Better Drug Design
Scientists have uncovered the structural details of how some proteins interact to turn two different signals into a single integrated output.
Protein Found to Play a Key Role in Blocking Pathogen Survival
Calprotectin fends off microbial invaders by limiting access to iron, an important nutrient.
Study Identifies the Off Switch for Biofilm Formation
New discovery could help prevent the formation of infectious bacterial films on hospital equipment.
How DNA ‘Proofreader’ Proteins Pick and Edit Their Reading Material
Researchers from North Carolina State University and the University of North Carolina at Chapel Hill have discovered how two important proofreader proteins know where to look for errors during DNA replication and how they work together to signal the body’s repair mechanism.
Protein Found to Control Inflammatory Response
A new Northwestern Medicine study shows that a protein called POP1 prevents severe inflammation and, potentially, diseases caused by excessive inflammatory responses.
X-ray Laser Experiment Could Help in Designing Drugs for Brain Disorders
Scientists found that when two protein structures in the brain join up, they act as an amplifier for a slight increase in calcium concentration, triggering a gunshot-like release of neurotransmitters from one neuron to another.
Team Identifies Structure of Tumor-Suppressing Protein
An international group of researchers led by Carnegie Mellon University physicists Mathias Lösche and Frank Heinrich have established the structure of an important tumor suppressing protein, PTEN.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!