Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Search for Epigenetic Decoder in Brain Cells Leads Scientists to Rett Syndrome

Published: Monday, December 31, 2012
Last Updated: Monday, December 31, 2012
Bookmark and Share
New analysis suggests that MeCP2 recognizes 5hmC in the brain and facilitates activation of the genes.

A few years ago, scientists discovered an unexpected layer of information woven into the genetic code - a nucleotide called 5-hydroxymethylcytosine, or 5hmC.

Its meaning was unknown at the time, but a new analysis suggests that a regulatory protein called MeCP2, known for its involvement in the nervous system disorder Rett Syndrome, recognizes 5hmC in the brain and facilitates activation of the genes in which it is most abundant.

The study, which includes the first maps of 5hmC’s distribution throughout the genomes of three types of brain cells, indicates 5hmC has different effects on gene activity in the nervous system than it does in other cell types in which it has been studied.

“This direct connection between 5hmC and Rett Syndrome will force two fast-moving and exciting fields to come together in a way that was totally unanticipated,” says Howard Hughes Medical Institute investigator Nathaniel Heintz, who led the study.

Heintz and his colleagues published their findings in the December 21, 2012, issue of the journal Cell.

A genome’s instructions for building proteins are spelled out in its sequence of As, Ts, Cs, and Gs - the DNA building blocks more formally known as adenine, thymine, cytosine, and guanine.

But just as important to shaping an organism’s form and function are chemical modifications to those nucleotides that influence how the DNA code is read. These modifications, known as epigenetic changes, help control when and where genes are switched on.

When Skirmantas Kriacionis in Heintz’s lab at Rockefeller University discovered high levels of 5hmC - a modified form of cytosine that had previously been found only in bacterial viruses - in brain cells in 2009, the scientists immediately suspected the nucleotide was involved in epigenetic regulation.

To figure out its significance, they began working to compile a map of where in the genome the new nucleotide could be found. 5hmC has since been found in other mammalian cells, but it is 10-20 times more abundant in the brain, so Heintz’s team focused their study there.

Other researchers had noted that in embryonic stem cells, 5hmC tended to cluster around regulatory regions of the genome. In brain cells, however, the nucleotide was distributed across genes - suggesting that its effects on gene regulation might vary by tissue or even cell.

Heintz, who has been working for decades to understand the differences between cell types in the nervous system (he estimates there are about 500), and his team chose three types of brain cells in which to map 5hmC: two types of neurons -Purkinje cells, which are large and elaborately branched, and granule cells, which are small and compact-as well as Bergmann glial cells, brain cells with an intermediary size and structure.

Although all of these cell types contain the same genetic information, each activates a unique set of genes to establish its specialized structure and function.

Marian Mellen, a postdoctoral fellow in the lab, used a chemical label to pinpoint 5hmC in the DNA of each of the three types of cells. In addition, they mapped the locations of another modified version of cytosine, 5-methyl cytosine, or 5mC. 5mC is a well studied epigenetic modification known to silence genes.

Their maps revealed that in each cell type, 5hmC was most abundant in active genes. Their data also showed that genes with high levels of 5hmC had low levels of the gene-silencing 5mC - though the strength of this relationship depended on the cell type.

“If you had to state a general rule, it would probably be that the higher the ratio of 5hmC to 5mC in a gene body in the nervous system, the more likely the gene will be expressed at high levels,” Heintz summarizes. “But transcriptional control is cell-specific.” Even in the three cell types they have so far studied, he says, the strength of each nucleotide’s effects on gene activity are not equivalent.

To search for the proteins that decode the information communicated by 5hmC in the brain, Kriaucionis and graduate student Pinar Ayata searched for proteins in brain cells that stuck to beads that they had coated with 5hmC. They found only one such protein, and were able to identify it as the regulatory protein known as methyl C-p-G binding protein 2 (MeCP2).

“MeCP2 is present at very high levels in the nervous system and at vanishingly low levels in the periphery - so maybe it’s not surprising that this epigenetic mark that is largely nervous system specific is recognized by a protein that is also nervous system specific,” Heintz says. “But to find that this well known, well studied protein is directly connected to hydroxymethylcytosine was really shocking.”

MeCP2 is best known for its involvement in Rett Syndrome. In children with Rett Syndrome, a mutation in the protein causes language and growth retardation, breathing problems, seizures, motor dysfunction, hand-wringing, and social impairment.

In 2008, HHMI investigator Huda Zoghbi, who discovered MeCP2’s link to Rett Syndrome, showed that in certain parts of the brain, the mutated protein alters the expression of about 2,500 genes. MeCP2 is now known to help inactivate genes marked by 5mC.

The new findings suggest MeCP2 can also help activate genes in which the concentration of 5hmC is high. In fact, experiments done by Ayata indicate that the regulatory protein has an equal affinity for binding to either of the two nucleotides. Heintz plans to investigate how the same protein can trigger these opposing effects, depending on which nucleotide it binds.

“This is nice situation where trying to study the biology of a particular cell type led us to an area of investigation that we had not anticipated,” he says, noting that he is eager to explore 5hmC’s involvement in Rett Syndrome. “It’s rare that you get a chance to be thrust into a field that you really didn’t think you were going to be inhabiting - but if you follow your experiments and believe what they tell you, you can end up in very different places than you had thought.”

Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 4,000+ scientific posters on ePosters
  • More than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Protein Nanocages Could Improve Drug Design and Delivery
HHMI scientists have designed and built 10 large protein icosahedra that are similar to viral capsids that carry viral DNA.
Monday, July 25, 2016
Spontaneous Mutations Play a Key Role in Congenital Heart Disease
New research shows that about 10 percent of these defects are caused by genetic mutations that are absent in the parents of affected children.
Monday, May 13, 2013
A New View of Transcription Initiation
Reading the human genome.
Monday, March 04, 2013
HHMI’s Robert Lefkowitz Awarded 2012 Nobel Prize in Chemistry
Robert Lefkowitz and Brian K. Kobilka are the recipients of the 2012 Nobel Prize in Chemistry for studies of G-protein coupled receptors.
Thursday, October 11, 2012
Autism Gene Screen Highlights Protein Network for Howard Hughes Medical Institute Scientists
Over the past decade, scientists have added many gene mutations to the list of potential risk factors for autism spectrum disorders -- but researchers still lack a definitive explanation of autism’s cause.
Thursday, April 05, 2012
Protein-Folding Game Taps Power of Worldwide Audience to Solve Difficult Puzzles
Extended efforts could pay off in the design of new proteins that help fight disease, sequester carbon, or clean up the environment.
Monday, August 09, 2010
Mutations in Different Cells Cooperate to Set the Stage for Cancer
HHMI researchers have shown that distinct cancer-causing mutations in neighboring cells can cooperate to produce tumors.
Friday, January 15, 2010
Scientists Identify New Genetic Culprit for Intellectual Disability
HHMI researchers identified a genetic mutation that plays a role in intellectual disability.
Monday, December 14, 2009
Sticklebacks Hone Defenses through Small DNA Deletions
A single genetic adjustment is enough to help a small fish make a big change, HHMI researchers find.
Friday, December 11, 2009
Studies Begin to Shape New Image of DNA
Researchers to develop a new picture of DNA that shows the molecule’s more dynamic side, which is capable of morphing into a large number of complex shapes.
Monday, November 09, 2009
Diagnosis Emerges from Complete Sequencing of Patient's Genes
HHMI researchers have identified a gene mutation that was responsible for the patient’s disease, but had not been suspected based on clinical observations.
Wednesday, October 28, 2009
Diagnosis Emerges from Complete Sequencing of Patient's Genes
Howard researchers used high-throughput DNA sequencing technology to identify a gene mutation that was responsible for the patient’s disease.
Tuesday, October 20, 2009
A Proliferation of Amyloid Arrangements
New research shows that variations in each fibril-forming protein’s arrangements may represent a protein-based system of inheritance between cells that parallels the genetic code.
Tuesday, August 25, 2009
Study Pinpoints Genetic Drivers of Lung Cancer’s Spread
Howard Hughes Medical Institute investigator find that lung cancer uses to seed deadly new tumors in the brain, bone marrow, and other organs.
Friday, July 03, 2009
New Strategy Reveals Targets for MicroRNA Gene Regulation
Researchers use HITS-CLIP technique to map the binding points of scores of different microRNAs throughout a genome in living mouse or human tissue.
Friday, June 19, 2009
Scientific News
Predicting Leukaemia Development in Cancer Patients
Biomarker may predict which formerly treated cancer patients will develop highly fatal form of leukemia.
‘NoBody,’ a Microprotein On a Mission
Researchers identify over 400 microproteins encoded in the human genome, one of which clears unneeded genetic material inside cells.
Top 10 Life Science Innovations of 2016
2016 has seen the release of some truly innovative products. To help you digest these developments, The Scientist have listed their top picks for the year.
Largest Resource of Protein-Protein Interactions
Researchers have developed the largest ever database of protein-protein interactions.
Bright Red Fluorescent Protein Created
Scientists have created a bright red, fluorescent protein that could be used to track essential cellular processes.
Protein Self-Regulates Abundance
Researchers have uncovered how a protein, that plays a crucial role in embryonic stem cell renewal, is regulated.
'Lab on the Skin' for Sweat Analysis
Northwestern University researchers develop a low-cost wearable electronic device that collects and analyzes sweat for health monitoring.
Building Better Nanodiscs
Researchers have improved upon the design of nanodiscs that provide an unprecedented view of viral infection.
Breast Cancer Cells Starve for Cystine
Depriving triple negative breast cancer, a treatment-resistant form of breast cancer, of cystine results in cancer cell death.
Novel Urine Test to Predict High-Risk Cervical Cancer
Preliminary studies affirm accuracy and potential cost savings to screen for virus-caused malignancy.
Scroll Up
Scroll Down
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
4,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos