Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Study Finds How Stressed-Out Cells Halt Protein Synthesis

Published: Wednesday, January 09, 2013
Last Updated: Wednesday, January 09, 2013
Bookmark and Share
Researchers also find protein-making can be resumed once stress has passed.

Cells experience stress in multiple ways. Temperature shifts, mis-folded proteins and oxidative damage can all cause cellular stress. But whatever the form of the stress, all cells quickly stop making proteins when under pressure.

A new Cornell study unravels how cells rapidly stall protein synthesis during stress and then resume their protein-making activities once the stress has passed.

If proteins continued to synthesize during stress, cells would waste energy, and damaged proteins would build up, leading to toxicity and disease.

Previously, researchers thought that during stress protein synthesis was only controlled at the point where the translation machinery starts to read mRNA, a DNA transcript carrying protein codes.

But the new study, published online Jan. 3 in the journal Molecular Cell, reports that the protein synthesis can actually be halted midway, during the subsequent phase in the protein synthesis process, called elongation, where proteins are being made in a long chain of amino acids, like ground beef coming out of a grinder.

The researchers used a technique they developed to monitor the protein synthesis process that involves ribosomes, which decode mRNA and build chains of amino acids, a protein's building blocks. They found, in the presence of stress and mis-folded proteins, the ribosomes pause during the early elongation process, when new peptides (chains of amino acids) were made but were still less than 50 amino acids long.

"We were very surprised," said Shu-Bing Qian, assistant professor of nutritional sciences at Cornell and the paper's senior author. "We thought it would pause everywhere, but we only found ribosomes pausing within the first 50 amino acids. We realized the translation machinery must have a mechanism for controlling trafficking in this region."

When peptides are made, they emerge from a tunnel at the end of the ribosome that is about 30 to 50 amino acids long. "Inside the tunnel, newly formed peptides are hidden from the outer environment," said Qian. But once they emerge, molecules called chaperones help to pull them from the ribosome.

The researchers found that under stress, chaperones were not present to pull the nascent peptides out as they emerged from the tunnel. The chaperones were instead recruited to help peptides -- damaged by conditions in the cell caused by stress -- refold into proteins.

"Our study shows that chaperones not only help folding but also control the ribosomes," said Qian. "We used chemical inhibitors to inhibit the chaperones in unstressed cells, and they paused in exactly the same place."

While Qian and colleagues looked at this process during stress caused by protein mis-folding, they believe the same process occurs no matter the source of stress.

If peptides were continuously produced during stress, they would become damaged and would accumulate, leading to toxicity and disease. Cancer cells, which grow out of control, have very high levels of chaperones for continuous protein synthesis. Researchers have developed chaperone inhibitors as a way of curbing cancer. Such inhibitors were used in this study to inhibit the chaperones in normal cells.

The study was funded by the National Institutes of Health, the Ellison Medical Foundation and the Department of Defense. Botao Liu, a graduate student, and Yan Han, a former postdoctoral associate, both in Qian's lab, were lead authors of the study.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Gene Prevents Buildup of Misfolded Cell Proteins
For the first time, Cornell researchers have demonstrated how a gene called SEL1L plays a critical role in clearing away misfolded proteins.
Friday, January 24, 2014
Shark, Human Proteins are Surprisingly Similar
Despite widespread fascination with sharks, the world’s oldest ocean predators have long been a genetic mystery.
Friday, December 06, 2013
Gene Thought to be Linked to Alzheimer's is Marker for Only Mild Impairment
Defying the widely held belief that a specific gene is the biggest risk factor for Alzheimer's disease, report says that people with that gene are more likely to develop mild cognitive impairment -- but not Alzheimer's.
Monday, February 18, 2013
Imaging Facility adds Two Tools for Microscopy
Cornell's Imaging Facility owns microscopes, scanners and ultrasound units for revealing details that can't be seen with the naked eye.
Monday, February 18, 2013
Protein Regulates Protein Folding in Cells During Stress
Researchers link protein known for cell mobility with protein folding during stress.
Thursday, January 03, 2013
Study: How Cells form 'Trash Bags' for Recycling Waste
A class of membrane-sculpting proteins create vesicles that carry old and damaged proteins from the surface of cellular compartments into internal recycling plants where the waste is degraded and components are reused.
Tuesday, October 23, 2012
Proteins Barge in to Turn Off Unneeded Genes and Save Energy
When they activate a gene, living cells have a system in reserve to turn it off.
Friday, September 07, 2012
Cell Membrane Proteins Feel Long-Range Forces
Proteins embedded in the lipid membranes of cells feel long-range attractive forces in specific patterns that mediate the proteins' behaviour.
Wednesday, September 05, 2012
New Method Helps Researchers Decode Genomes
Although scientists sequenced the entire human genome more than 10 years ago, much work remains to understand what proteins all those genes code for.
Wednesday, September 05, 2012
Cell Membrane Proteins Feel Long-Range Forces
A team from Cornell have identified the physical mechanisms behind protein interactions, which are set off by changes in cellular membranes.
Thursday, August 30, 2012
Insights into Protein Folding May Lead to Better Flu Vaccine
New method for looking at how proteins fold allows researchers to take snapshots of ribosomes.
Friday, August 03, 2012
Bacteria Employ 'Quality-control' Machinery, say Biomolecular Engineers
Like quality-control managers in factories, bacteria possess built-in machinery that track the shape and quality of proteins trying to pass through their cytoplasmic membranes.
Friday, August 03, 2012
Scientific News
Key to Natural Detoxifier’s Reactivity Discovered
Results have implications for health, drug design and chemical synthesis.
New Protein Found in Immune Cells
Immunobiologists from the University of Freiburg discover Kidins220/ARMS in B cells and demonstrate its functions.
Cell's Waste Disposal System Regulates Body Clock Proteins
New way to identify interacting proteins could identify potential drug targets.
How a Molecular Motor Untangles Protein
Diseases such as Alzheimer’s, Parkinson’s and prion diseases, all involve “tangled” proteins.
Compound Doubles Up On Cancer Detection
Researchers have found that tagging a pair of markers found almost exclusively on a common brain cancer yields a cancer signal that is both more obvious and more specific to cancer.
How Cell Growth Triggers Cell Division
Researchers in Jan Skotheim's lab have discovered a previously unknown mechanism that controls how large cells grow, an insight that could one day provide insight into attacking diseases such as cancer.
Probing the Forces Involved in Creating The Mitotic Spindle
Scientists at The Rockefeller University reveal new insights into the mechanical forces that govern elements of the mitotic spindle formation.
Identifying Cancer’s Food Sensors May Help to Halt Tumour Growth
Oxford University researchers have identified a protein used by tumours to help them detect food supplies. Initial studies show that targeting the protein could restrict cancerous cells’ ability to grow.
Specific Variations in RNA Splicing Linked to Breast Cancer
Researchers have identified cellular changes that may play a role in converting normal breast cells into tumors. Targeting these changes could potentially lead to therapies for some forms of breast cancer.
Thousands of Protein Interactions Identified
Thanks to the work by Utrecht University researcher Fan Liu and her colleagues, it is now possible to map the interactions between proteins in human cells.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos