Corporate Banner
Satellite Banner
Proteomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

IU Research Suggests Molecular ‘Switch’ May Play Role in Tumor Suppression

Published: Wednesday, January 16, 2013
Last Updated: Wednesday, January 16, 2013
Bookmark and Share
Newly published research by Indiana University identifies a "topology switch" in the protein clathrin, the function of which may shed light on molecular processes involved in tumor suppression.

The paper, available in and featured on the front cover of the Jan. 16, 2013, issue of FEBS Letters, a journal of the Federation of European Biochemical Societies, could broaden scientists' understanding of the importance of clathrin and potentially lead to new strategies for controlling cancer.

"This is a totally unexpected but wonderful finding," Ybe said. "It has exciting implications for understanding the role that clathrin may play in the growth or suppression of tumors."

Ybe is a senior research scientist in the Department of Molecular and Cellular Biochemistry in the IU College of Arts and Sciences. Co-authors of the paper are postdoctoral researchers Sarah Fontaine and Xiaoyan Lin; IU chemist Todd Stone; Sanjay Mishra, formerly at IU and now at Vanderbilt University; and Jay Nix of Lawrence Berkeley National Laboratory.

Typically found in a three-legged form called a trimer, clathrin is best understood for its role in endocytosis, the process by which cells absorb proteins and other molecules. But recent research has suggested that clathrin in a one-legged form, or monomer, may have a role in suppressing tumors. Ybe and his team show how a "switch" in clathrin can be flipped to produce non-trimeric clathrin molecules.

"Clathrin is known to function as a trimer in receptor-mediated endocytosis, but the existence of the monomeric form and its role in tumor suppression is less well-accepted," said Alexandra Ainsztein, who oversees membrane trafficking grants at the National Institute of General Medical Sciences of the National Institutes of Health. "By providing evidence for a model in which a molecular shift de-trimerizes clathrin and changes its cellular distribution, this work will spur further research into unanticipated roles for this important molecule in healthy and diseased cells."

In endocytosis, trimeric clathrin molecules bind together to form molecular packages that allow other substances to enter cells. Several years ago, researchers in Japan published evidence that clathrin can also serve as an activator of the protein p53, a known tumor suppressor.

For the activation to take place, clathrin and p53 must both be present in the cell's nucleus. The catch is that clathrin molecules cannot penetrate the nucleus in their usual, three-legged form. To enter, the three-legged clathrin molecule must be altered or "de-trimerized."

Using X-ray crystallography, Ybe and his team discovered a "topology switch" in the clathrin molecule. They showed they could break the switch by mutating one key amino acid that is part of the switch. The result: Clathrin was "detrimerized"; three-legged molecules were broken into one-legged ones.

Experimenting with both cancer and non-cancer cells, the researchers found the three-legged clathrin only in the cytoplasm of the cells, not the nucleus. But with the "switch" broken, clathrin formed monomers and was also present in the nucleus, where it could potentially activate tumor suppression.

Ybe said the results point to the need for additional research to better understand the structure and function of clathrin and the role it plays in cellular processes, including those involved in cancer. With the clathrin "switch" identified, researchers can attempt to better understand how it can be activated, with the goal of developing new therapies for suppressing the growth of tumors. Ybe has a patent pending on the idea to use the mutated form of clathrin to stimulate the natural anti-cancer activities of human cells.

The finding developed from Ybe's research on the role of clathrin in Huntington's disease, a genetic disorder that causes neurological degeneration and is estimated to affect about 15,000 people in the U.S.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Cellular Contamination Pathway for Heavy Elements Identified
Berkeley Lab scientists find that an iron-binding protein can transport actinides into cells.
Lemon Juice and Human Norovirus
Citric acid may prevent the highly contagious norovirus from infecting humans, scientists discovered from the German Cancer Research Center.
Signature of Microbiomes Linked to Schizophrenia
Studying microbiomes in throat may help identify causes and treatments of brain disorder.
Structural Discoveries Could Aid in Better Drug Design
Scientists have uncovered the structural details of how some proteins interact to turn two different signals into a single integrated output.
Protein Found to Play a Key Role in Blocking Pathogen Survival
Calprotectin fends off microbial invaders by limiting access to iron, an important nutrient.
Study Identifies the Off Switch for Biofilm Formation
New discovery could help prevent the formation of infectious bacterial films on hospital equipment.
How DNA ‘Proofreader’ Proteins Pick and Edit Their Reading Material
Researchers from North Carolina State University and the University of North Carolina at Chapel Hill have discovered how two important proofreader proteins know where to look for errors during DNA replication and how they work together to signal the body’s repair mechanism.
Protein Found to Control Inflammatory Response
A new Northwestern Medicine study shows that a protein called POP1 prevents severe inflammation and, potentially, diseases caused by excessive inflammatory responses.
X-ray Laser Experiment Could Help in Designing Drugs for Brain Disorders
Scientists found that when two protein structures in the brain join up, they act as an amplifier for a slight increase in calcium concentration, triggering a gunshot-like release of neurotransmitters from one neuron to another.
Team Identifies Structure of Tumor-Suppressing Protein
An international group of researchers led by Carnegie Mellon University physicists Mathias Lösche and Frank Heinrich have established the structure of an important tumor suppressing protein, PTEN.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!