Corporate Banner
Satellite Banner
Proteomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

TAP Biosystems Partners with Life Technologies on Protein Expression Platform

Published: Tuesday, January 15, 2013
Last Updated: Friday, January 18, 2013
Bookmark and Share
The companies will collaborate to develop a cost-efficient, high throughput protein expression platform.

The partnership will combine Life Technologies’ Expi293™ Expression System for transient transfection with TAP’s ambr™ advanced micro bioreactor to enable automated high throughput small scale protein expression. The increased culture consistency and productivity provided by both the Expi293 and ambr systems will offer an exciting new platform for both small volume protein expression screens and optimisation of transient expression conditions. 

The ambr system uses realistic scale down bioreactors where culture conditions such as pH and DO are tightly controlled in 48 micro bioreactors (10-15 mL) in parallel, so that protein quality produced by the Expi293F cells cultured in ambr is highly consistent. The protein generated can be used with confidence in vector optimisation studies, as well as high throughput, small scale functional protein production and protein purification studies.

Dr Sanjay Vasu, Staff Scientist at Life Technologies explained: “Currently with Expi293F cells we’re seeing yields of up to 1g/L, exceeding the expression levels of even bacterial systems. The benefit of this is that scientists will have sufficient protein for analytical studies. And since this is a mammalian system, mammalian proteins are more likely to be properly folded and biologically active. We are pleased to be collaborating with TAP because using the ambr system’s automated bioprocessing capabilities; we can leverage both our platforms to provide high yields in a high throughput format for lower costs, which will represent a real breakthrough for many protein screeners.”

Dr Barney Zoro, ambr Product Manager at TAP Biosystems added: “Most high throughput protein expression is performed manually in 30mL shake flask cultures or in shaking plates, where there isn’t consistent pH and DO control. Manually intensive shake flask workflows are costly to operate, can produce variable results for productivity and protein quality, and often show poor scalability to larger bioreactor cultures. Since the Expi293 Expression System can produce milligram to gram quantities of protein with consistent quality, it is ideal to amplify this with the consistent automation and proven scalability of the ambr system. This will enable scientists to rapidly automate the generation of enough protein for analysis from 48 parallel cultures, thus saving laboratory staff time, increasing laboratory capacity and significantly reducing the cost per gram of protein produced. This powerful technology combination has the potential to revolutionise high throughput protein expression programmes and we’re delighted to be part of it.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 4,000+ scientific posters on ePosters
  • More than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Protein-Based “Cancer Signature” Uncovered
Researchers investigated the expression of ribosomal proteins in human tissues and discovered a cancer type specific signature which could be used to predict the progression of the disease.
Predicting Leukaemia Development in Cancer Patients
Biomarker may predict which formerly treated cancer patients will develop highly fatal form of leukemia.
‘NoBody,’ a Microprotein On a Mission
Researchers identify over 400 microproteins encoded in the human genome, one of which clears unneeded genetic material inside cells.
Top 10 Life Science Innovations of 2016
2016 has seen the release of some truly innovative products. To help you digest these developments, The Scientist have listed their top picks for the year.
Largest Resource of Protein-Protein Interactions
Researchers have developed the largest ever database of protein-protein interactions.
Bright Red Fluorescent Protein Created
Scientists have created a bright red, fluorescent protein that could be used to track essential cellular processes.
Protein Self-Regulates Abundance
Researchers have uncovered how a protein, that plays a crucial role in embryonic stem cell renewal, is regulated.
'Lab on the Skin' for Sweat Analysis
Northwestern University researchers develop a low-cost wearable electronic device that collects and analyzes sweat for health monitoring.
Building Better Nanodiscs
Researchers have improved upon the design of nanodiscs that provide an unprecedented view of viral infection.
Breast Cancer Cells Starve for Cystine
Depriving triple negative breast cancer, a treatment-resistant form of breast cancer, of cystine results in cancer cell death.
Scroll Up
Scroll Down
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
4,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!