Corporate Banner
Satellite Banner
Proteomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Study Confirms No Transmission of Alzheimer's Proteins between Humans

Published: Wednesday, February 06, 2013
Last Updated: Wednesday, February 06, 2013
Bookmark and Share
No evidence to show that proteins can spread around within the brain or between animals and humans.

Mounting evidence demonstrates that the pathological proteins linked to the onset and progression of neurodegenerative disorders are capable of spreading from cell-to-cell within the brains of affected individuals and thereby “spread” disease from one interconnected brain region to another.

A new study found no evidence to support concerns that these abnormal disease proteins are “infectious” or transmitted from animals to humans or from one person to another. The study by researchers from the Perelman School of Medicine at the University of Pennsylvania, in conjunction with experts from the U.S. Centers for Disease Control and the Department of Health and Human Services, appears online in JAMA Neurology.

Cell-to-cell transmission is a potentially common pathway for disease spreading and progression in diseases like Alzheimer's (AD) and Parkinson's (PD) disease as well as frontotemporal lobar degeneration (FTLD), amyotrophic lateral sclerosis (ALS) and other related disorders. It appears that misfolded proteins spread from one cell to another and that the affected neurons become dysfunctional, while these toxic proteins go on to damage other regions of the brain over time.

"By interrogating an existing database with information on a cohort of well-characterized patients, we were able to determine that there is no evidence suggesting the pathology of Alzheimer’s or Parkinson’s can transmit between humans,"  said senior author John Q. Trojanowski, MD, PhD, professor of Pathology and Laboratory Medicine and co-director of the Penn Center for Neurodegenerative Disease Research. "We can now redouble efforts to find treatments, via immunotherapies or other approaches to stop the spreading of these toxic proteins between cells."

 In order to verify whether such proteins could potentially be carried from person to person, the team of researchers analyzed data from an existing cohort of patients who had received human growth hormone (hGH) from cadaveric pituitary glands via a national program, as a beneficial treatment for stunted growth, before synthetic hGH was available. Nearly 7,700 patients were treated with cadaver-derived hGH (c-hGH) in the US between 1963 and 1985. In the mid-1980s, more than 200 patients worldwide who had received c-hGH inadvertently contaminated with prion proteins from affected donor pituitary tissue went on to develop an acquired form of Creutzfeldt-Jakob disease (CJD), a rare, degenerative, invariably fatal brain disorder caused by pathological prion proteins that also are the cause of Mad Cow disease. Since then, the cohort has been followed to track any additional cases of CJD, with extensive medical histories for patients over the 30+ years since the c-hGH therapy was stopped after the link to CJD was discovered in 1985.

In this current study, researchers looked for signs of an elevated risk of AD, PD, FTLD or ALS among this group and found that none of the c-hGH recipients developed AD, PD or FTLD. The team did identify three ALS cases of unclear significance, given that no traces of ALS disease proteins (TDP-43, FUS and Ubiquilin) were found in human pituitary glands, despite the presence of pathological AD (tau, Aβ) and PD (alpha-synuclein) proteins. This clarified that c-hGH recipients were most likely exposed to these neurodegenerative disease proteins linked to AD, PD and FTLD but this did not result in transmission of disease from person to person.

"This cohort is an invaluable resource and should continue to be followed, especially as we rapidly increase our understanding of disease progression in neurodegenerative conditions," said David Irwin, MD, lead author, and fellow in the Center for Neurodegenerative Disease Research and the department of Neurology in the Perelman School of Medicine.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Study Identifies Potential Treatment Target for Cocaine Addiction
Small change in receptor subunit reduces cocaine seeking in an animal model of addiction.
Thursday, October 30, 2014
Changes to DNA On-Off Switches Affect Cells' Ability to Repair Breaks
Many proteins are involved in everyday DNA repair, but if they are mutated, the repair system breaks down and cancer can occur.
Wednesday, February 06, 2013
Penn-Temple Team Discovers What Keeps a Cell's Energy Source Going
Most healthy cells rely on a complicated process to produce the fuel ATP, understanding it’s production is important for understanding cancers.
Friday, November 30, 2012
Scientific News
Charting Kidney Cancer Metabolism
Changes in cell metabolism are increasingly recognized as an important way tumors develop and progress, yet these changes are hard to measure and interpret. A new tool designed by MSK scientists allows users to identify metabolic changes in kidney cancer tumors that may one day be targets for therapy.
"Dark Side" of the Transcriptome
New approach to quantifying gene "read-outs" reveals important variations in protein synthesis and has implications for understanding neurodegenerative diseases.
Advancing Synthetic Biology
Living systems rely on a dizzying variety of chemical reactions essential to development and survival. Most of these involve a specialized class of protein molecules — the enzymes.
Structure of Brain Plaques in Huntington's
Researchers at the University of Pittsburgh School of Medicine have shown that the core of the protein clumps found in the brains of people with Huntington's disease have a distinctive structure, a finding that could shed light on the molecular mechanisms underlying the neurodegenerative disorder.
Visualizing a Cancer Drug Target at Atomic Resolution
Using cryo-electron microscopy, researchers were able to view, in atomic detail, the binding of a potential small molecule drug to a key protein in cancer cells.
Pumpjack" Mechanism for Splitting and Copying DNA
High-resolution structural details of cells' DNA-replicating proteins offer new insight into how these molecular machines function
The Power of Three
Overlooked portion of cell “death receptor” critical in some cancers, autoimmune diseases.
Biomarker for Recurring HPV-Linked Oropharyngeal Cancers
A look-back analysis of HPV infection antibodies in patients treated for oropharyngeal (mouth and throat) cancers linked to HPV infection suggests at least one of the antibodies could be useful in identifying those at risk for a recurrence of the cancer, say scientists at the Johns Hopkins University.
Light Signals from Living Cells
Fluorescent protein markers delivered under high pressure.
Cellular 'Relief Valve'
A team led by scientists at The Scripps Research Institute (TSRI) has solved a long-standing mystery in cell biology by showing essentially how a key “relief-valve” in cells does its job.
Scroll Up
Scroll Down
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!