Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Study Confirms No Transmission of Alzheimer's Proteins between Humans

Published: Wednesday, February 06, 2013
Last Updated: Wednesday, February 06, 2013
Bookmark and Share
No evidence to show that proteins can spread around within the brain or between animals and humans.

Mounting evidence demonstrates that the pathological proteins linked to the onset and progression of neurodegenerative disorders are capable of spreading from cell-to-cell within the brains of affected individuals and thereby “spread” disease from one interconnected brain region to another.

A new study found no evidence to support concerns that these abnormal disease proteins are “infectious” or transmitted from animals to humans or from one person to another. The study by researchers from the Perelman School of Medicine at the University of Pennsylvania, in conjunction with experts from the U.S. Centers for Disease Control and the Department of Health and Human Services, appears online in JAMA Neurology.

Cell-to-cell transmission is a potentially common pathway for disease spreading and progression in diseases like Alzheimer's (AD) and Parkinson's (PD) disease as well as frontotemporal lobar degeneration (FTLD), amyotrophic lateral sclerosis (ALS) and other related disorders. It appears that misfolded proteins spread from one cell to another and that the affected neurons become dysfunctional, while these toxic proteins go on to damage other regions of the brain over time.

"By interrogating an existing database with information on a cohort of well-characterized patients, we were able to determine that there is no evidence suggesting the pathology of Alzheimer’s or Parkinson’s can transmit between humans,"  said senior author John Q. Trojanowski, MD, PhD, professor of Pathology and Laboratory Medicine and co-director of the Penn Center for Neurodegenerative Disease Research. "We can now redouble efforts to find treatments, via immunotherapies or other approaches to stop the spreading of these toxic proteins between cells."

 In order to verify whether such proteins could potentially be carried from person to person, the team of researchers analyzed data from an existing cohort of patients who had received human growth hormone (hGH) from cadaveric pituitary glands via a national program, as a beneficial treatment for stunted growth, before synthetic hGH was available. Nearly 7,700 patients were treated with cadaver-derived hGH (c-hGH) in the US between 1963 and 1985. In the mid-1980s, more than 200 patients worldwide who had received c-hGH inadvertently contaminated with prion proteins from affected donor pituitary tissue went on to develop an acquired form of Creutzfeldt-Jakob disease (CJD), a rare, degenerative, invariably fatal brain disorder caused by pathological prion proteins that also are the cause of Mad Cow disease. Since then, the cohort has been followed to track any additional cases of CJD, with extensive medical histories for patients over the 30+ years since the c-hGH therapy was stopped after the link to CJD was discovered in 1985.

In this current study, researchers looked for signs of an elevated risk of AD, PD, FTLD or ALS among this group and found that none of the c-hGH recipients developed AD, PD or FTLD. The team did identify three ALS cases of unclear significance, given that no traces of ALS disease proteins (TDP-43, FUS and Ubiquilin) were found in human pituitary glands, despite the presence of pathological AD (tau, Aβ) and PD (alpha-synuclein) proteins. This clarified that c-hGH recipients were most likely exposed to these neurodegenerative disease proteins linked to AD, PD and FTLD but this did not result in transmission of disease from person to person.

"This cohort is an invaluable resource and should continue to be followed, especially as we rapidly increase our understanding of disease progression in neurodegenerative conditions," said David Irwin, MD, lead author, and fellow in the Center for Neurodegenerative Disease Research and the department of Neurology in the Perelman School of Medicine.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Study Identifies Potential Treatment Target for Cocaine Addiction
Small change in receptor subunit reduces cocaine seeking in an animal model of addiction.
Thursday, October 30, 2014
Changes to DNA On-Off Switches Affect Cells' Ability to Repair Breaks
Many proteins are involved in everyday DNA repair, but if they are mutated, the repair system breaks down and cancer can occur.
Wednesday, February 06, 2013
Penn-Temple Team Discovers What Keeps a Cell's Energy Source Going
Most healthy cells rely on a complicated process to produce the fuel ATP, understanding it’s production is important for understanding cancers.
Friday, November 30, 2012
Scientific News
Exploring the Causes of Cancer
Queen's research to understand the regulation of a cell surface protein involved in cancer.
Measuring microRNAs in Blood to Speed Cancer Detection
A simple, ultrasensitive microRNA sensor holds promise for the design of new diagnostic strategies and, potentially, for the prognosis and treatment of pancreatic and other cancers.
Novel Proteins Linked to Huntington's Disease
University of Florida Health researchers have made a new discovery about Huntington's disease, showing that the gene that causes the fatal disorder makes an unexpected "cocktail" of mutant proteins that accumulate in the brain.
Enzyme Critical to Maintaining Telomere Length Discovered
New method expected to speed understanding of short telomere diseases and cancer.
New Method Identifies Up to Twice as Many Proteins and Peptides
An international team of researchers developed a method that identifies up to twice as many proteins and peptides in mass spectrometry data than conventional approaches.
Metabolic Profiles Distinguish Early Stage Ovarian Cancer with Unprecedented Accuracy
Studying blood serum compounds of different molecular weights has led scientists to a set of biomarkers that may enable development of a highly accurate screening test for early-stage ovarian cancer.
New Way to Force Stem Cells to Become Bone Cells
Potential therapies based on this discovery could help people heal bone injuries or set hardware, such as replacement knees and hips.
Long-Sought Protein Sensor for the ‘Sixth Sense’ Discovered
In a study led by scientists from The Scripps Research Institute (TSRI)the sensor protein for propioception has been identified.
How Viruses Commandeer Human Proteins
Researchers have produced the first image of an important human protein as it binds with ribonucleic acid (RNA), a discovery that could offer clues to how some viruses, including HIV, control expression of their genetic material.
Tracking How Herpes Simplex Virus Moves Through Cells
In a recent study, Derek Walsh, PhD, associate professor of Microbiology-Immunology, and his team showed how the herpes simplex virus (HSV) exploits microtubule plus-end tracking proteins to initiate transport and infection in human cells.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos