Corporate Banner
Satellite Banner
Proteomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Can Cancer Be Turned Against Itself?

Published: Thursday, February 07, 2013
Last Updated: Thursday, February 07, 2013
Bookmark and Share
Immune system can use melanoma's own proteins to kill off cancer cells, TAU researchers find.

Though a small group of proteins, the family called Ras controls a large number of cellular functions, including cell growth, differentiation, and survival. And because the protein has a hand in cellular division, mutated Ras, which can be detected in one-third of all tumors, contributes to many human cancers by allowing for the rapid growth of diseased cells.

Now Prof. Yoel Kloog of Tel Aviv University's Department of Neurobiology, along with Dr. Itamar Goldstein of TAU's Sackler Faculty of Medicine and the Sheba Medical Center and their students Helly Vernitsky and Dr. Oded Rechavi, has found that oncogenic Ras, which promotes cancer development, can also alert the immune system to the presence of cancer cells.

For the first time, the researchers have shown the transfer of oncogenic Ras in human cells from melanoma cells to T cells, which belong to a group of white blood cells that are part of the immune system. This transfer allows the immune cells to gather crucial intelligence on what they are fighting and develop the necessary cytokines, or signalling molecules, to kill the melanoma cells.

Prof. Kloog suggests that a drug that enhances the transfer of the oncogene from the tumor to the immune cells is a potential therapy to augment the anti-cancer immune response. This research has been published in the Journal of Immunology.

Finding the tipping point

Although they found that immune cells often exchange proteins among themselves, the discovery that melanoma cells transfer mutated Ras is an intriguing first. And it's this initial transfer that begins what the researchers call a positive feedback loop.

In the lab, researchers incubated T-cells from patients with human melanoma cells that had originated from tumors to track the process of handing-off various proteins. They uncovered a circuit that runs between the cancer and immune cells. Once the melanoma cells pass oncogenic Ras to the T-cells, the T-cells are activated and begin to produce cytokines, which enhances their capacity to kill cancer cells.

As these melanoma cells pass along the mutated Ras, the immune cells become increasingly active. Eventually, enough oncogenic material is transferred across the immune cells' threshold, causing the T-cells to act on the melanoma cells from which the oncogenic Ras was derived. Ultimately, this transfer tips the scales in favor of the immune cells, the researchers say.

Exploiting the information transfer

The next step is to develop a therapy that can enhance the transfer in patients with cancers linked to oncogenic Ras, says Prof. Kloog. And although their research has so far focused on melanoma, which is known to elicit the response of the immune system, he believes that this finding could be applicable to other types of cancers.

There is a constant balancing act between cancer cells and the immune system, says Dr. Goldstein. Under normal circumstances, the immune system will kill some cancerous cells on a daily basis. The disease becomes critical when the immune system can no longer keep cancer cells in check. Although there are many theories as to how cancer cells break free of this cycle, scientists are still attempting to discover why this occurs.

Prof. Kloog and Dr. Goldstein hope that this research leads to a better understanding of how the immune system fights tumors. "It's a part of the interaction between cancer and the immune system that is not well known," says Dr. Goldstein. "We are trying to gather more comprehensive data on all the proteins that are being passed around, and how this information impacts the immune system's response to cancer."


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
TOPLESS Plants Provide Clues to Human Molecular Interactions
Scientists at Van Andel Research Institute have revealed an important molecular mechanism in plants that has significant similarities to certain signaling mechanisms in humans, which are closely linked to early embryonic development and to diseases such as cancer.
Toxin from Salmonid Fish has Potential to Treat Cancer
Researchers from the University of Freiburg decode molecular mechanism of fish pathogen.
Study Finds Non-Genetic Cancer Mechanism
Cancer can be caused solely by protein imbalances within cells, a study of ovarian cancer has found.
Long-sought Discovery Fills in Missing Details of Cell 'Switchboard'
A biomedical breakthrough reveals never-before-seen details of the human body’s cellular switchboard that regulates sensory and hormonal responses.
Rice Disease-Resistance Discovery Closes the Loop for Scientific Integrity
Researchers reveal how disease resistant rice detects and responds to bacterial infections.
The Mystery of the Instant Noodle Chromosomes
Researchers from the Lomonosov Moscow State University evaluated the benefits of placing the DNA on the principle of spaghetti.
New Mussel-Inspired Surgical Protein Glue
Korean scientists have developed a light-activated, mussel protein-based bioadhesive that works on the same principles as mussels attaching to underwater surfaces and insects maintaining structural balance and flexibility.
Vital Protein in Healthy Fertilization Process Identified
Researchers at the National Institutes of Health have discovered a protein that plays a vital role in healthy egg-sperm union in mice.
Teeth Reveal Lifetime Exposures to Metals, Toxins
Researchers have identified dental biomarkers to reveal links between early iron exposure and late life brain diseases.
View of Bacterial Pump at the Atomic Level
Researchers have determined the structure of a simple but previously unexamined pump that controls the passage of proteins through a bacterial cell membrane, an achievement that offers new insight into the mechanics that allow bacteria to manipulate their environments.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!