Corporate Banner
Satellite Banner
Proteomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Protein Paves the Way for Correct Stem Cell Differentiation

Published: Monday, February 11, 2013
Last Updated: Monday, February 11, 2013
Bookmark and Share
Research from BRIC, University of Copenhagen, has identified a crucial role of the molecule Fbxl10 in differentiation of embryonic stem cells.

A single embryonic stem cell can develop into more than 200 specialized cell types that make up our body. This maturation process is called differentiation and is tightly regulated through strict control of gene activity. If the regulation is lost, specialized cells cannot develop correctly during development. In adulthood, the specialized cells may forget their identity and develop into cancer cells. Research from BRIC, University of Copenhagen, has identified a crucial role of the molecule Fbxl10 in differentiation of embryonic stem cells and suggests the molecule as a new potential target for cancer therapy.

“Our new results show that this molecule is required for the function of one of the most important molecular switches that constantly regulates the activity of our genes. If Fbxl10 is not present in embryonic stem cells, the cells cannot differentiate properly and this can lead to developmental defects”, says Professor Kristian Helin, who heads the research group behind the new findings.

Fbxl10 recruits and activates genetic switches

The Polycomb protein complexes PRC1 and PRC2 are some of the most important genetics switches, which control  the fate of individual cells through negative regulation of gene activity. The mechanism by which PRCs are recruited to DNA has been elusive as they are not capable of binding DNA directly. The new results from the Helin research group provide a mechanism for how the PRCs are recruited to the genes that are to be silent.

“Our results show that Fbxl10 is essential for recruiting PRC1 to genes that are to be silenced in embryonic stem cells. Fbxl10 binds directly to DNA and to PRC1, and this way it serves to bring PRC1 to specific genes. When PRC1 is bound to DNA it can modify the DNA associated proteins, which lead to  silencing of the gene to which it binds”, says postdoc Xudong Wu, who has led the experimental part of the investigation.

Fbxl10 is a potential target for cancer therapy

Timing of gene activity is not only crucial during development, but has to be maintained throughout the lifespan of any cell. Some genes are active at a certain times, but inactive at other times.. Here PRC1 comes into play. PRC1 is dynamically recruited to and dissociated from genes according to the needs of our organism. When cancer strikes, this tight regulation of gene activity is often lost and the cells are locked in a less differentiated stage. This loss of differentiation and the accumulation of other mutations allow the cancer cells to undergo indefinite self-renewal through endless cell divisions, an ability that normal differentiated cells are prohibited from through tight gene regulation.

“Given the emerging relationship between cancer and stem cells, our findings may implicate that an aberrant activity of Fbxl10 can disturb PRC function and promote a lack of differentiation in our cells. This makes it worth studying whether blocking the function of Fbxl10 could be a strategy for tumour therapy”, says Xudong Wu.

And that is exactly what the researchers want to try. In collaboration with the biotech company EpiTherapeutics, the researchers want to develop inhibitors to Fbxl10 as a potential novel therapy for cancer.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Discovery Accelerates Targeted Cancer Treatment
In collaboration with international scientists, researchers from the University of Copenhagen have developed a method to help shorten the road to better cancer treatment.
Monday, May 11, 2015
Grants Attract Top Researchers to Copenhagen
Two international leading researchers have each been awarded a Novo Nordisk Foundation Laureate Research Grant of DKK 40 million (€ 5.36 million).
Monday, January 28, 2013
Reconsidering Cancer's Bad Guy
Researchers at the University of Copenhagen have found that a protein, known for causing cancer cells to spread around the body, is also one of the molecules that trigger repair processes in the brain.
Tuesday, November 20, 2012
Scientific News
Cellular Contamination Pathway for Heavy Elements Identified
Berkeley Lab scientists find that an iron-binding protein can transport actinides into cells.
Lemon Juice and Human Norovirus
Citric acid may prevent the highly contagious norovirus from infecting humans, scientists discovered from the German Cancer Research Center.
Signature of Microbiomes Linked to Schizophrenia
Studying microbiomes in throat may help identify causes and treatments of brain disorder.
Structural Discoveries Could Aid in Better Drug Design
Scientists have uncovered the structural details of how some proteins interact to turn two different signals into a single integrated output.
Protein Found to Play a Key Role in Blocking Pathogen Survival
Calprotectin fends off microbial invaders by limiting access to iron, an important nutrient.
Study Identifies the Off Switch for Biofilm Formation
New discovery could help prevent the formation of infectious bacterial films on hospital equipment.
How DNA ‘Proofreader’ Proteins Pick and Edit Their Reading Material
Researchers from North Carolina State University and the University of North Carolina at Chapel Hill have discovered how two important proofreader proteins know where to look for errors during DNA replication and how they work together to signal the body’s repair mechanism.
Protein Found to Control Inflammatory Response
A new Northwestern Medicine study shows that a protein called POP1 prevents severe inflammation and, potentially, diseases caused by excessive inflammatory responses.
X-ray Laser Experiment Could Help in Designing Drugs for Brain Disorders
Scientists found that when two protein structures in the brain join up, they act as an amplifier for a slight increase in calcium concentration, triggering a gunshot-like release of neurotransmitters from one neuron to another.
Team Identifies Structure of Tumor-Suppressing Protein
An international group of researchers led by Carnegie Mellon University physicists Mathias Lösche and Frank Heinrich have established the structure of an important tumor suppressing protein, PTEN.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!