Corporate Banner
Satellite Banner
Proteomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Gene Thought to be Linked to Alzheimer's is Marker for Only Mild Impairment

Published: Monday, February 18, 2013
Last Updated: Monday, February 18, 2013
Bookmark and Share
Defying the widely held belief that a specific gene is the biggest risk factor for Alzheimer's disease, report says that people with that gene are more likely to develop mild cognitive impairment -- but not Alzheimer's.

The study suggests that older adults with healthy brain function can get genetic tests to predict increased risk of future mild cognitive impairment. However, once they are impaired cognitively, the tests won't predict their likelihood of developing Alzheimer's.

"Right now, genetic tests are used in exactly the opposite way. That is, healthy people don't get the tests to predict their risk of mild cognitive impairment, but impaired people get them to predict their risk of Alzheimer's disease," said Charles Brainerd, professor of human development and the study's lead co-author with Valerie Reyna, professor of human development. "So, impaired people think that tests will tell them if they are at increased risk of Alzheimer's, which they won't. And healthy people think that tests won't tell them whether they are at increased risk of cognitive impairment, which they will."

The researchers describe their findings in the January issue of Neuropsychology (27:1).

The work builds on previous research by Brainerd and associates that suggested the ε4 allele of the APOE genotype increases the risk of mild cognitive impairment as well as Alzheimer's.

The researchers analyzed data from the only nationally representative dataset of its kind, the National Institute on Aging's Aging, Demographics and Memory Study. They looked at data from 418 people over age 70 to see if those who carried the allele were more likely to develop mild cognitive impairment compared with those who did not have the allele. They also looked at whether ε4 carriers with mild cognitive impairment were more likely to develop Alzheimer's disease compared with non-carriers with mild cognitive impairment.

They found that healthy ε4 carriers were nearly three times -- 58 percent -- more likely to develop mild cognitive impairment compared with non-carriers. However, ε4 carriers with mild cognitive impairment developed Alzheimer's at the same rate as non-carriers.

While previous studies showed that the ε4 allele was more common in people with Alzheimer's disease, this study shows that it does not increase the risk that healthy or impaired people will become demented. Rather, ε4 increases the risk that healthy people will become cognitively impaired, and impaired people are the primary source of new Alzheimer's diagnoses, Brainerd explained. "The reason ε4 is a risk factor for mild cognitive impairment, but not for progression from mild cognitive impairment to Alzheimer's disease, is that this allele is a marker of initial cognitive declines -- for example, memory and executive function -- that are associated with mild cognitive impairment but not of subsequent declines in cognition or in daily functioning that are associated with forms of Alzheimer's disease."

Brainerd also noted that the effects of ε4 in healthy adults can be detected by the mid-20s. While ε4 is not a risk factor for the severe cognitive declines that signal dementia, it is risk factor for the weaker declines that eventually produce mild cognitive impairment.

The co-authors of the paper are Ronald Petersen and Glenn Smith of the Mayo Clinic; Anna Kenney '11, Caroline Gross '12 and Emily Taub '10 of Cornell -- all of whom helped conduct the research as undergraduates in Brainerd's lab; Brenda Plassman of Duke University Medical Center; and Gwenith Fisher of the University of Michigan.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More than 4,400+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Proteins Seek, Attack, Destroy Tumor Cells in Bloodstream
Using white blood cells to ferry potent cancer-killing proteins through the bloodstream virtually eliminates metastatic prostate cancer in mice, Cornell researchers have confirmed.
Friday, January 15, 2016
Gene Prevents Buildup of Misfolded Cell Proteins
For the first time, Cornell researchers have demonstrated how a gene called SEL1L plays a critical role in clearing away misfolded proteins.
Friday, January 24, 2014
Shark, Human Proteins are Surprisingly Similar
Despite widespread fascination with sharks, the world’s oldest ocean predators have long been a genetic mystery.
Friday, December 06, 2013
Imaging Facility adds Two Tools for Microscopy
Cornell's Imaging Facility owns microscopes, scanners and ultrasound units for revealing details that can't be seen with the naked eye.
Monday, February 18, 2013
Study Finds How Stressed-Out Cells Halt Protein Synthesis
Researchers also find protein-making can be resumed once stress has passed.
Wednesday, January 09, 2013
Protein Regulates Protein Folding in Cells During Stress
Researchers link protein known for cell mobility with protein folding during stress.
Thursday, January 03, 2013
Study: How Cells form 'Trash Bags' for Recycling Waste
A class of membrane-sculpting proteins create vesicles that carry old and damaged proteins from the surface of cellular compartments into internal recycling plants where the waste is degraded and components are reused.
Tuesday, October 23, 2012
Proteins Barge in to Turn Off Unneeded Genes and Save Energy
When they activate a gene, living cells have a system in reserve to turn it off.
Friday, September 07, 2012
Cell Membrane Proteins Feel Long-Range Forces
Proteins embedded in the lipid membranes of cells feel long-range attractive forces in specific patterns that mediate the proteins' behaviour.
Wednesday, September 05, 2012
New Method Helps Researchers Decode Genomes
Although scientists sequenced the entire human genome more than 10 years ago, much work remains to understand what proteins all those genes code for.
Wednesday, September 05, 2012
Cell Membrane Proteins Feel Long-Range Forces
A team from Cornell have identified the physical mechanisms behind protein interactions, which are set off by changes in cellular membranes.
Thursday, August 30, 2012
Insights into Protein Folding May Lead to Better Flu Vaccine
New method for looking at how proteins fold allows researchers to take snapshots of ribosomes.
Friday, August 03, 2012
Bacteria Employ 'Quality-control' Machinery, say Biomolecular Engineers
Like quality-control managers in factories, bacteria possess built-in machinery that track the shape and quality of proteins trying to pass through their cytoplasmic membranes.
Friday, August 03, 2012
Scientific News
Potential “Good Fat” Biomarker
New method to measure the activity of energy consuming brown fat cells could ease the testing weight loss drugs.
Computational Model Finds New Protein-Protein Interactions
Researchers at University of Pittsburgh have discovered 500 new protein-protein interactions (PPIs) associated with genes linked to schizophrenia.
New Insights into Gene Regulation
Researchers have solved the three-dimensional structure of a gene repression complex that is known to play a role in cancer.
Controlling RNA in Living Cells
Modular, programmable proteins can be used to track or manipulate gene expression.
Soy Shows Promise as Natural Anti-Microbial Agent
Soy isoflavones and peptides may inhibit the growth of microbial pathogens that cause food-borne illnesses, according to a new study from University of Guelph researchers.
Potential Target for Revolutionary Antibiotics
An international team of including the Lomonosov Moscow State University researchers discovered which enzyme enables Escherichia coli bacterium (E. coli) to breathe.
DNA Barcodes Gone Wild
A team of researchers at University of Toronto’s Donnelly Centre and Sinai Health System’s Lunenfeld-Tanenbaum Research Institute (LTRI) has developed a new technology that can stitch together DNA barcodes inside a cell to simultaneously search amongst millions of protein pairs for protein interactions.
Biomarkers for Profiling Prostate Cancer Patients
Exiqon A/S has announced the publication of validation of prognostic microRNA biomarkers for the aggressiveness of prostate cancer in independent cohorts.
Grant to Fund Million Peaks Project
The European Research Council (ERC) has awarded a prestigious Advanced Grant to Prof. Peter Schoenmakers, Prof. Albert Polman and Prof. Huib Bakker, all three of whom work at the University of Amsterdam (UvA).
Study Finds Factors That May Influence Influenza Vaccine Effectiveness
Researchers at NIH have suggested that the long-held approach to predicting seasonal influenza vaccine effectiveness may need to be revisited.
Scroll Up
Scroll Down
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,400+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!