Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

EMBL Choose ambr Micro Bioreactor System for Insect Cell Culture

Published: Friday, March 08, 2013
Last Updated: Friday, March 08, 2013
Bookmark and Share
Enabling rapid production of human multi-protein complexes using baculovirus.

TAP Biosystems has announced that its advanced micro bioreactor system (ambr™) is in use at the European Molecular Biology Laboratory (EMBL) in Grenoble, France, one of the world’s leading structural biology research institutes, for rapid small scale parallel expression of human multi-protein complexes using baculovirus.

The ambr micro bioreactor system at EMBL, which was funded by the French Investissement d'Avenir Initiative is being used by EMBL scientists in the Eukaryotic Expression Facility (EEF) for culturing insect cells containing baculovirus expression systems to produce differently engineered human multi-protein complexes for crystallography studies.

These protein complexes are being assessed to determine the architecture of protein cascades and pathways that lead to human disease states.

Researchers at EMBL believe that determining these pathways will ultimately reveal pivotal points where protein complexes could be of interest in drug discovery, or as a novel class of therapeutics.

Dr Imre Berger, Group Leader, in the EEF explained: “We use baculovirus because it ensures correct expression and solubility of multi-protein complexes, as well as provides sufficient protein for crystallization. We need to study large numbers of protein complex variants and had been using shake flasks to do this.  However, this type of manual culture method is not practical for us as it is time consuming and almost impossible to evaluate many variants in parallel. So we decided last year to automate the process and when we saw the ambr system we realized that the new ambr workstation with active cooling could help to streamline multi-protein expression and accelerate our research.”

Berger added: “Our difficulty is that using baculovirus and insect cells is not like working with CHO [Chinese Hamster Ovary] cells. The cells require lower growth temperatures, and you have to add baculovirus at a specific time point for successful infection. The new ambr version overcomes these issues, allowing us to grow our insect cells at 27ºC and carry out automated virus additions. TAP’s application specialists have worked with us, showing us how to use the software to monitor cell growth during culture, and set up optimal automated infection timing. We are very happy with using ambr for baculovirus expression in insect cells. Miniaturizing baculovirus expression with the ambr is now an integral part of the ComplexINC research programme and it will have a significant impact on the pace of our work.”

Dr Barney Zoro, ambr Product Manager at TAP Biosystems concluded: "We’re delighted that this world leading research institute has chosen ambr and has, for the first time, successfully proven insect cell growth and protein expression in ambr. Their research demonstrates that ambr can facilitate small scale rapid parallel production of large sets of multi-protein complexes with baculovirus, and may potentially help uncover new targets for use in future drug discovery programmes, or even a novel class of protein therapeutics.”

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

TAP Biosystems Partners with Life Technologies on Protein Expression Platform
The companies will collaborate to develop a cost-efficient, high throughput protein expression platform.
Tuesday, January 15, 2013
Scientific News
Exploring the Causes of Cancer
Queen's research to understand the regulation of a cell surface protein involved in cancer.
Measuring microRNAs in Blood to Speed Cancer Detection
A simple, ultrasensitive microRNA sensor holds promise for the design of new diagnostic strategies and, potentially, for the prognosis and treatment of pancreatic and other cancers.
Novel Proteins Linked to Huntington's Disease
University of Florida Health researchers have made a new discovery about Huntington's disease, showing that the gene that causes the fatal disorder makes an unexpected "cocktail" of mutant proteins that accumulate in the brain.
Enzyme Critical to Maintaining Telomere Length Discovered
New method expected to speed understanding of short telomere diseases and cancer.
New Method Identifies Up to Twice as Many Proteins and Peptides
An international team of researchers developed a method that identifies up to twice as many proteins and peptides in mass spectrometry data than conventional approaches.
Metabolic Profiles Distinguish Early Stage Ovarian Cancer with Unprecedented Accuracy
Studying blood serum compounds of different molecular weights has led scientists to a set of biomarkers that may enable development of a highly accurate screening test for early-stage ovarian cancer.
New Way to Force Stem Cells to Become Bone Cells
Potential therapies based on this discovery could help people heal bone injuries or set hardware, such as replacement knees and hips.
Long-Sought Protein Sensor for the ‘Sixth Sense’ Discovered
In a study led by scientists from The Scripps Research Institute (TSRI)the sensor protein for propioception has been identified.
How Viruses Commandeer Human Proteins
Researchers have produced the first image of an important human protein as it binds with ribonucleic acid (RNA), a discovery that could offer clues to how some viruses, including HIV, control expression of their genetic material.
Tracking How Herpes Simplex Virus Moves Through Cells
In a recent study, Derek Walsh, PhD, associate professor of Microbiology-Immunology, and his team showed how the herpes simplex virus (HSV) exploits microtubule plus-end tracking proteins to initiate transport and infection in human cells.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos