Corporate Banner
Satellite Banner
Proteomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

NIH-funded Researchers Create Next-Generation Alzheimer’s Disease Model

Published: Thursday, April 11, 2013
Last Updated: Thursday, April 11, 2013
Bookmark and Share
New rat model will advance Alzheimer’s research.

A new genetically engineered lab rat that has the full array of brain changes associated with Alzheimer’s disease supports the idea that increases in a molecule called beta-amyloid in the brain causes the disease, according to a study, published in the Journal of Neuroscience.

The study was supported by the National Institutes of Health.

“We believe the rats will be an excellent, stringent pre-clinical model for testing experimental Alzheimer’s disease therapeutics,” said Terrence Town, Ph.D., the study’s senior author and a professor in the Department of Physiology & Biophysics in the Zilkha Neurogenetic Institute at the University of Southern California Keck School of Medicine, Los Angeles.
 
Alzheimer’s is an age-related brain disorder that gradually destroys a person’s memory, thinking, and the ability to carry out even the simplest tasks. Affecting at least 5.1 million Americans, the disease is the most common form of dementia in the United States.

Pathological hallmarks of Alzheimer’s brains include abnormal levels of beta-amyloid protein that form amyloid plaques; tau proteins that clump together inside neurons and form neurofibrillary tangles; and neuron loss.

Additionally, glial cells - which normally support, protect, or nourish nerve cells - are overactivated in Alzheimer’s.

Plaque-forming beta-amyloid molecules are derived from a larger protein called amyloid precursor protein (APP). One hypothesis states that increases in beta-amyloid initiate brain degeneration.

Genetic studies on familial forms of Alzheimer’s support the hypothesis by linking the disease to mutations in APP, and to presenilin 1, a protein thought to be involved in the production beta-amyloid.

Researchers often use rodents to study diseases. However, previous studies on transgenic mice and rats that have the APP and presenilin 1 mutations only partially reproduce the problems caused by Alzheimer’s.

The animals have memory problems and many plaques but none of the other hallmarks, especially neurofibrillary tangles and neuron loss.

To address this issue, Dr. Town and his colleagues decided to work with a certain strain of rats.

“We focused on Fischer 344 rats because their brains develop many of the age-related features seen in humans,” said Dr. Town, who conducted the study while working as a professor of Biomedical Sciences at Cedars-Sinai Medical Center and David Geffen School of Medicine at the University of California, Los Angeles.

The rats were engineered to have the mutant APP and presenilin 1 genes, which are known to play a role in the rare, early-onset form of Alzheimer’s.

Behavioral studies showed that the rats developed memory and learning problems with age.

As predicted, the presence of beta-amyloid in the brains of the rats increased with age. However, unlike previous rodent studies, the rats also developed neurofibrillary tangles.

“This new rat model more closely represents the brain changes that take place in humans with Alzheimer’s, including tau pathology and extensive neuronal cell death,” said Roderick Corriveau, Ph.D., a program director at NIH’s National Institute of Neurological Disorders and Stroke.

Corriveau continued, “The model will help advance our understanding of the various disease pathways involved in Alzheimer’s onset and progression and assist us in testing promising interventions.”

The researchers performed a variety of experiments confirming the presence of neurofibrillary tangles in brain regions most affected by Alzheimer’s such as the hippocampus and the cingulate cortex, which are involved in learning and memory.

Further experiments showed that about 30 percent of neurons in these regions died with age, the largest amount of cell death seen in an Alzheimer’s rodent model, and that some glial cells acquired shapes reminiscent of the activated glia found in patients.

“Our results suggest that beta-amyloid can drive Alzheimer’s in a clear and progressive way,” said Dr. Town.

Activation of glia occurred earlier than amyloid plaque formation, which suggests Dr. Town and his colleagues identified an early degenerative event and new treatment target that scientists studying other rodent models may have missed.

The findings support a prime research objective identified during the May 2012, NIH-supported Alzheimer’s Disease Research Summit 2012: Path to Treatment and Prevention, an international gathering of Alzheimer’s researchers and advocates. Improved animal models were cited as key to advancing understanding of this complex disease.

"To fully benefit from this exciting new work, there is a critical need to share the animal model with researchers dedicated to finding ways to delay, prevent or treat Alzheimer's disease’’ said Neil Buckholtz, Ph.D., of the National Institute on Aging, which leads the NIH effort in Alzheimer’s research.

Buckholtz continued, “Accordingly, Dr. Town and his colleagues are working towards making their new rat model easily accessible to the research community.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Detecting Bacterial Infections in Newborns
Researchers tested an alternative way to diagnose bacterial infections in infants—by analyzing RNA biosignatures from a small blood sample.
Wednesday, September 14, 2016
$12.4M Awarded to Neural Regeneration Projects
The National Institutes of Health will fund six projects to identify biological factors that influence neural regeneration.
Friday, September 02, 2016
Oxygen Can Impair Cancer Immunotherapy
Researchers have identified a mechanism within the lungs where anticancer immune resposnse is inhibited.
Friday, August 26, 2016
New Inflammatory Disease Discovered
NIH researchers have discovered a rare and potentially deadly disease - otulipenia - the mostly affects children.
Tuesday, August 23, 2016
How Parkinson’s Disease Alters Brain Activity Over Time
The NIH study provides a new tool for testing experimental medications aimed at alleviating symptoms and slowing the rate at which the diseases damage the brain.
Tuesday, August 16, 2016
Genetic Cause of Rare Pediatric Neuropathy Identified
NIH mouse study identifies the mechanism responsible for a rare form of pediatric neuropathy.
Thursday, August 04, 2016
Uncovering Rhinovirus C Structure
Researchers have determined the structure of rhinovirus C. Their findings may aid the development of antiviral therapies and vaccines.
Wednesday, July 27, 2016
Advancing Protein Visualization
Cryo-EM methods can determine structures of small proteins bound to potential drug candidates.
Friday, May 27, 2016
Study Finds Factors That May Influence Influenza Vaccine Effectiveness
Researchers at NIH have suggested that the long-held approach to predicting seasonal influenza vaccine effectiveness may need to be revisited.
Wednesday, April 20, 2016
Visualizing a Cancer Drug Target at Atomic Resolution
Using cryo-electron microscopy, researchers were able to view, in atomic detail, the binding of a potential small molecule drug to a key protein in cancer cells.
Wednesday, February 10, 2016
Genomic Signature Shared by Five Types of Cancer
National Institutes of Health researchers have identified a striking signature in tumor DNA that occurs in five different types of cancer.
Monday, February 08, 2016
Natural Protein Points to New Inflammation Treatment
Findings may offer insight to effective treatments for inflammatory diseases, such as rheumatoid arthritis, psoriasis, and multiple sclerosis.
Friday, February 05, 2016
Biomarkers Outperform Symptoms in Parsing Psychosis Subgroups
Multiple biological pathways lead to similar symptoms - NIH-funded study.
Thursday, December 10, 2015
NIH Supports New Studies to Find Alzheimer’s Biomarkers in Down Syndrome
Initiative will track dementia onset, progress in Down syndrome volunteers.
Tuesday, December 01, 2015
Dementia Linked to Deficient DNA Repair
Mutant forms of breast cancer factor 1 (BRCA1) are associated with breast and ovarian cancers but according to new findings, in the brain the normal BRCA1 gene product may also be linked to Alzheimer’s disease.
Tuesday, December 01, 2015
Scientific News
Mass Spec Technology Drives Innovation Across the Biopharma Workflow
With greater resolving power, analytical speed, and accuracy, new mass spectrometry technology and techniques are infiltrating the biopharmaceuticals workflow.
One Step Closer to Precision Medicine for Chronic Lung Disease Sufferers
A study led by University of North Carolina at Chapel Hill, and National Jewish Health, has provided evidence of links between SNPs and known COPD blood protein biomarkers.
Designing Drugs with a Whole New Toolbox
Researchers develop methods to design small, targeted proteins with shapes not found in nature.
Protein Studies Discover Molecular Secrets
Two protein studies have mapped proteins that reveal the secrets to recycling carbon and healing cells.
Tapping Evolution to Improve Biotech Products
Researchers show how 'ancestral sequence reconstruction' can be used to guide engineering of a blood clotting protein.
New Weapon Against Hard-to-Treat Bacterial Infections
Using peptides, researchers have been able to prevent drug-resistance bacteria from forming abscesses.
Gene Regulation in Brain May Explain Repetitive Behaviors in Rett Syndrome Patients
The research could be a key step in developing treatments to eliminate symptoms that drastically impair the quality of life in Rett patients.
CES Score May Predict Response to Cancer Treatment
Researchers identify new type of biomarker that helps predict prognosis and response to several types of cancer treatment.
Gene Deletion Reveals Cell Secrets
Researchers have deleted 174 genes in yeast to analyse the effect of individual gene deletion.
New Therapeutic Target for Crohn’s Disease
A promising new target for drugs that treat IBD has been identified along with a possible biomarker for IBD severity.
Scroll Up
Scroll Down
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!