Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

A Molecular “Superglue” Based on Flesh-Eating Bacteria

Published: Monday, April 15, 2013
Last Updated: Monday, April 15, 2013
Bookmark and Share
In a classic case of turning an enemy into a friend, scientists have engineered a protein from flesh-eating bacteria to act as a molecular “superglue” that promises to become a disease fighter.

And their latest results, which make the technology more versatile, were the topic of a report here today at the 245th National Meeting & Exposition of the American Chemical Society, the world’s largest scientific society.

“We’ve turned the tables and put one kind of flesh-eating bacterium to good use,” said Mark Howarth, Ph.D., who led the research. “We have engineered one of its proteins into a molecular superglue that adheres so tightly that the set-up we used to measure the strength actually broke. It resists high and low temperatures, acids and other harsh conditions and seals quickly. With this material we can lock proteins together in ways that could underpin better diagnostic tests — for early detection of cancer cells circulating in the blood, for instance. There are many uses in research, such as probing how the forces inside cells change the biochemistry and affect health and disease.”

Howarth’s team at the University of Oxford in the United Kingdom genetically engineered the glue from a protein, FbaB, that helps Streptococcus pyogenes (S. pyogenes) bacteria infect cells. S. pyogenes is one of the microbes that can cause the rare necrotizing fasciitis, or flesh-eating bacteria syndrome, in which difficult-to-treat infections destroy body tissue.

They split FbaB into two parts, a larger protein and a smaller protein subunit, termed a peptide. Abbreviating S. pyogenes as “Spy,” they named the small peptide “SpyTag” and the larger protein “SpyCatcher.” The gluing action occurs when SpyTag and SpyCatcher meet. They quickly lock together by forming one of the strongest possible chemical bonds. SpyCatcher and SpyTag can be attached to the millions of proteins in the human body and other living things, thus gluing proteins together.

In an advance reported at the meeting, Howarth described how Jacob Fierer, a graduate student on the research team, greatly reduced the size of the SpyCatcher part of the technology. That achievement makes the technology more flexible, enabling scientists to connect proteins into new architectures, he said.

One of the applications on the horizon involves testing the technology as a new way to detect “circulating tumor cells,” or CTCs. Tumors shed these cells into the bloodstream, where they may act as seeds, spreading or metastasizing cancer from the original site to other parts of the body. That spreading is the reason why cancer is such a serious health problem. Detecting CTCs is an active area of research worldwide because of its potential for early diagnosis of cancer — from blood samples rather than biopsies — and determining when new treatments may be needed to prevent the disease from spreading.

Howarth said that the Spy technology has advantages over other molecular gluing systems that are available. SpyCatcher and SpyTag, for instance, can glue two proteins together at any point in the protein. “That flexibility allows us many different ways to label proteins and gives us new approaches to assemble proteins together for diagnostic tests,” Howarth explained.

Howarth and colleagues are working with Isis Innovation, the University of Oxford’s technology transfer company, to find potential partners to bring the Spy system to the market.

The researchers acknowledge funding from the Clarendon Fund.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,700+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Sniffing Out Cancer
Scientists have been exploring new ways to “smell” signs of cancer by analyzing what’s in patients’ breath.
Thursday, October 01, 2015
Whey Beneficially Affects Diabetes and Cardiovascular Disease Risk Factors in Obese Adults
New evidence shores up findings that whey protein could have health benefits for people who are obese and do not yet have diabetes.
Thursday, May 01, 2014
Pressurized Virus Blasts its Infectious DNA into Human Cells
The virus that causes those painful lip blisters known as cold sores has an internal pressure eight times higher than a car tire.
Monday, July 29, 2013
Identifying Carbonylated Proteins in Brain Tissue
Reseachers from the Complutense University of Madrid have recently conducted an investigation into the different proteomic approaches used in identifying oxidative stress by measuring carbonyl end products of protein oxidation. The article compares the benefits and pitfalls of running the DNPH derivatization step before or after electrophoresis.
Monday, January 17, 2011
Scientific News
Biomarker Predicting Transplant Complications May be Key to Treating Them
A protein that can be used to predict if a stem cell transplant patient will suffer severe complications may also be the key to preventing those complications, an international research team based at the Indiana University School of Medicine reported Wednesday.
New Protein Cleanup Factors Found to Control Bacterial Growth
UMass Amherst researchers characterize previously mysterious proteolysis factors.
Proteins with ALS, Cancer Role Do Not Assume a Regular Shape
Our cells contain proteins, essential to functions like protein creation and DNA repair but also involved in forms of ALS and cancer, that never take a characteristic shape, a new study shows.
Key to Natural Detoxifier’s Reactivity Discovered
Results have implications for health, drug design and chemical synthesis.
New Protein Found in Immune Cells
Immunobiologists from the University of Freiburg discover Kidins220/ARMS in B cells and demonstrate its functions.
Cell's Waste Disposal System Regulates Body Clock Proteins
New way to identify interacting proteins could identify potential drug targets.
How a Molecular Motor Untangles Protein
Diseases such as Alzheimer’s, Parkinson’s and prion diseases, all involve “tangled” proteins.
Compound Doubles Up On Cancer Detection
Researchers have found that tagging a pair of markers found almost exclusively on a common brain cancer yields a cancer signal that is both more obvious and more specific to cancer.
How Cell Growth Triggers Cell Division
Researchers in Jan Skotheim's lab have discovered a previously unknown mechanism that controls how large cells grow, an insight that could one day provide insight into attacking diseases such as cancer.
Probing the Forces Involved in Creating The Mitotic Spindle
Scientists at The Rockefeller University reveal new insights into the mechanical forces that govern elements of the mitotic spindle formation.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,700+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos