Corporate Banner
Satellite Banner
Proteomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Random Walks on DNA

Published: Monday, April 22, 2013
Last Updated: Monday, April 22, 2013
Bookmark and Share
Scientists have revealed how a bacterial enzyme has evolved an energy-efficient method to move long distances along DNA.

The findings, published in Science, present further insight into the coupling of chemical and mechanical energy by a class of enzymes called helicases, a widely-distributed group of proteins, which in human cells are implicated in some cancers.

The new helicase mechanism discovered in this study, led by researchers from the University of Bristol and the Technische Universität Dresden in Germany, may help resolve some of the unexplained roles for helicases in human biology, and in turn help researchers to develop future technological or medical applications.

A commonly held view of DNA helicases is that they move along DNA and “unzip” the double helix to produce single strands of DNA for repair or copying. This process requires mechanical work, so enzyme movement must be coupled to consumption of the chemical fuel ATP. These enzymes are thus often considered as molecular motors.

In the new work, Ralf Seidel and his team at the Technische Universität Dresden developed a microscope that can stretch single DNA molecules whilst at the same time observe the movement of single fluorescently-labelled helicases. In parallel, the Bristol researchers in the DNA-Protein Interactions Unit used millisecond-resolution fluorescence spectroscopy to reveal dynamic changes in protein conformation and the kinetics of ATP consumption.

The team studied a helicase found in bacteria that moves along viral (bacteriophage) DNA. The work demonstrated that, surprisingly, the enzyme only consumed ATP at the start of the reaction in order to change conformation. Thereafter long-range movement along the DNA was driven by thermal motion; in other words by collisions with the surrounding water molecules. This produces a characteristic one-dimensional “random walk” (see picture), where the protein is just as likely to move backwards as forwards.

Mark Szczelkun, Professor of Biochemistry from the University’s School of Biochemistry and one of the senior authors of the study, said: “This enzyme uses the energy from ATP to force a change in protein conformation rather than to unwind DNA. The movement on DNA thereafter doesn’t require an energy input from ATP. Although movement is random, it occurs very rapidly and the enzyme can cover long distances on DNA faster than many ATP-driven motors. This can be thought of as a more energy-efficient way to move along DNA and we suggest that this mechanism may be used in other genetic processes, such as DNA repair.”

The work in Bristol has been funded by the Wellcome Trust through a programme grant to Professor Mark Szczelkun from the School of Biochemistry.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More than 4,900+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Protein Responsible for Controlling Communication Between Brain Cells Identified
Scientists are a step closer to understanding how some of the brain’s 100 billion nerve cells co-ordinate their communication.
Thursday, November 28, 2013
Manipulation of Protein Could Help Stop Spread of Cancer Cells
New findings, published in the Nature journal Oncogene, reveal how a protein, PRH, is normally able to prevent cells from unnecessary migration.
Monday, November 18, 2013
Researchers Find Key to Blood-Clotting Process
Researchers have uncovered a key process in understanding how blood clots form that could help pave the way for new therapies to reduce the risk of heart attacks.
Wednesday, June 26, 2013
Scientific News
Liquid Biopsies: Miracle Diagnostic or Next New Fad?
Thanks to the development of highly specific gene-amplification and sequencing technologies liquid biopsies access more biomarkers relevant to more cancers than ever before.
Uncovering Rhinovirus C Structure
Researchers have determined the structure of rhinovirus C. Their findings may aid the development of antiviral therapies and vaccines.
New Centre Offers Ultra-Speed Protein Analysis
UW-Madison researchers to establish development centre for next-gen protein measurement technologies.
Protein Nanocages Could Improve Drug Design and Delivery
HHMI scientists have designed and built 10 large protein icosahedra that are similar to viral capsids that carry viral DNA.
Virus Inspired Cell Cargo Ships
Virus-inspired container design may lead to cell cargo ships following construction of ten large, two-component, icosahedral protein complexes.
Protein Reinforces Growth of Damaged Muscles
Biologists have found a protein involved in stem cells that bolsters damaged muscle tissue growth - potential for muscle degeneration treatments.
Structure of Cold Virus Solved
Researchers have identified the structure of an elusive cold virus linked to child asthma and respiratory infections, providing the foundation for treating the virus.
New Protein Model Could Accelerate Drug Development
Stony Brook-led international research team creates ultra-fast approach to model protein interactions.
Researchers Can Control Genes Involved in Cancer
A new way to control the activity of a protein, that is often upregulated in cancer, has been discovered by Moffitt researchers through monoubiquitination mechanism.
Mitochondrial Role in Metastatic Cancer
Researchers have manipulated proteins, sourced from tumour cells, that are essential for maintaining tumour cells and in doing so, have significantly reduced the ability of cancer cells.
Scroll Up
Scroll Down
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,900+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!