Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Study Finds Potential Medical Uses for Algae

Published: Monday, April 22, 2013
Last Updated: Monday, April 22, 2013
Bookmark and Share
Can scientists rid malaria from the Third World by simply feeding algae genetically engineered with a vaccine?

That’s the question biologists at UC San Diego sought to answer after they demonstrated last May that algae can be engineered to produce a vaccine that blocks malaria transmission. In a follow up study, published online today in the scientific journal Applied and Environmental Microbiology, they got their answer: Not yet, although the same method may work as a vaccine against a wide variety of viral and bacterial infections.

In their most recent study, which the authors made freely available on the Applied and Environmental Microbiology website at, the researchers fused a protein that elicits an antibody response in mice against the organism that causes malaria, Plasmodium falciparum, which afflicts 225 million people worldwide, with a protein produced by the bacterium responsible for cholera, Vibrio cholera, that binds to intestinal epithelial cells. They then genetically engineered algae to produce this two-protein combination, or “fusion protein,” freeze dried the algae and later fed the resulting green powder to mice. The researchers hypothesized that together these proteins might be an effective oral vaccine candidate when delivered using algae.

The result? The mice developed Immunoglobulin A (IgA) antibodies to both the malarial parasite protein and to a toxin produced by the cholera bacteria. Because IgA antibodies are produced in the gut and mucosal linings, they don’t protect against the malarial parasites, which are injected directly into the bloodstream by mosquitoes. But their study suggests that similar fusion proteins might protect against infectious diseases that affect mucosal linings using their edible freeze-dried algae.

“Many bacterial and viral infections are caused by eating tainted food or water,” says Stephen Mayfield, a professor of biology at UC San Diego who headed the study. “So what this study shows is that you can get a really good immune response from a recombinant protein in algae that you feed to a mammal. In this case, it happens to be a mouse, but presumably it would also work in a human. That’s really encouraging for the potential for algae-based vaccines in the future.”

The scientists say bacterial infections caused by Salmonella, E. coli and other food and water-borne pathogens could be prevented in the future with inexpensive vaccines developed from algae that could be eaten rather than injected. “It might even be used to protect against cholera itself,” said James Gregory, a postdoctoral researcher in Mayfield’s lab and the first author of the paper. In his experiments with mice, he said, Immunoglobulin G (IgG) antibodies—which are found in blood and tissues—were produced against the cholera toxin, “but not the malaria antigen and we don’t quite understand why.”

Part of the difficulty in creating a vaccine against malaria is that it requires a system that can produce structurally complex proteins that resemble those made by the parasite, thus eliciting antibodies that disrupt malaria transmission. Most vaccines created by engineered bacteria are relatively simple proteins that stimulate the body’s immune system to produce antibodies against bacterial invaders.

Three years ago, a UC San Diego team of biologists headed by Mayfield, who is also the director of the San Diego Center for Algae Biotechnology, a research consortium seeking to develop transportation fuels from algae, published a landmark study demonstrating that many complex human therapeutic proteins, such as monoclonal antibodies and growth hormones, could be produced by the common algae Chlamydomonas. That got Gregory wondering if complex malarial transmission blocking vaccine candidates could also be produced by Chlamydomonas.  Two billion people live in malaria endemic regions, making the delivery of a malarial vaccine a costly and logistically difficult proposition, especially when that vaccine is expensive to produce. So the UC San Diego biologists set out to determine if this alga, an organism that can produce complex proteins very cheaply, could produce malaria proteins that would inhibit infections from malaria.

“It’s too costly to vaccinate two billion people using current technologies,” explained Mayfield. “Realistically, the only way a malaria vaccine will ever be used in the developing world is if it can be produced at a fraction of the cost of current vaccines.  Algae have this potential because you can grow algae any place on the planet in ponds or even in bathtubs.”

Collaborating with Joseph Vinetz, a professor of medicine at UC San Diego and a leading expert in tropical diseases who has been working on developing vaccines against malaria, the researchers showed in their earlier study, published in the open access journal PLoS ONE  last May that the proteins produced by the algae, when injected into laboratory mice, made antibodies that blocked malaria transmission from mosquitoes.

The next step was to see if they could immunize mice against malaria by simply feeding the genetically engineered algae. “We think getting oral vaccines in which you don’t have to purify the protein is the only way in which you can make medicines dramatically cheaper and make them available to the developing world,” says Mayfield. “The Holy Grail is to develop an orally delivered vaccine, and we predict that we may be able to do it in algae, and for about a penny a dose. Our algae-produced malarial vaccine works against malarial parasites in mice, but it needs to be injected into the bloodstream.”

Although an edible malarial vaccine is not yet a reality, he adds, “this study shows that you can make a pretty fancy protein using algae, deliver it to the gut and get IgA antibodies that recognize that protein. Now we know we have a system that can deliver a complex protein to the right place and develop an immune response to provide protection.”

Mayfield is also co-director of the Center for Food & Fuel for the 21st Century, a new research unit that has brought together researchers from across the campus to develop renewable ways of improving the nation’s food, fuel, pharmaceutical and other bio-based industries and is this week hosting a major symposium on the subject at the Institute of the Americas at UC San Diego.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,700+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Industry-Sponsored Academic Inventions Spur Increased Innovation
Analysis questions assumption that corporate support skews science toward inventions that are less useful than those funded by the government or non-profit organizations.
Monday, March 24, 2014
Structure of Key Pain-Related Protein Unveiled
In a technical tour de force, scientists have determined, at near-atomic resolution, the structure of a protein that plays a central role in the perception of pain and heat.
Friday, December 06, 2013
Chemical Signature for Fast Form of Parkinson's Found
The physical decline experienced by Parkinson's disease patients eventually leads to disability and a lower quality of life.
Monday, November 25, 2013
New Insights into How Proteins Regulate Genes
Researchers have developed a new way to parse and understand how special proteins called "master regulators" read the genome, and consequently turn genes on and off.
Monday, October 21, 2013
Cell Growth Discovery Has Implications for Targeting Cancer
The way cells divide to form new cells is controlled in previously unsuspected ways.
Monday, October 21, 2013
Discovery Could Lead to Saliva Test for Pancreatic Cancer
The disease is typically diagnosed through an invasive and complicated biopsy.
Tuesday, October 15, 2013
Tuberculosis and Parkinson’s Disease Linked by Unique Protein
UCSF researchers seek way to boost protein to fight both diseases.
Wednesday, September 11, 2013
Effects of Parkinson’s Disease Mutation Reversed in Cells
UCSF study used chemical commonly found in anti-wrinkle cream.
Friday, August 23, 2013
Dentistry School Receives $5M to Study Saliva Biomarkers
Imagine having a sample of your saliva taken at the dentist's office, and then learning within minutes whether your risk for stomach cancer is higher than normal.
Thursday, August 15, 2013
Scientists Devise Innovative Method to Profile and Predict the Behavior of Proteins
A class of proteins that are made up of multiple, interlocking molecular components, enzymes perform a variety of tasks inside each cell.
Friday, August 09, 2013
Immune System Molecule Promotes Tumor Resistance
A team of scientists has shown for the first time that a signaling protein involved in inflammation also promotes tumor resistance to anti-angiogenic therapy.
Tuesday, August 06, 2013
Failure to Destroy Toxic Protein Contributes to Progression of Huntington’s Disease
Gladstone-led study also finds target that boosts protein clearance, prolongs cell life.
Tuesday, July 23, 2013
Deadliest Cancers May Respond to New Drug Treatment Strategy
Researchers have found a way to knock down cancers caused by a tumor-driving protein called “myc,” paving the way for clinical trials.
Monday, July 22, 2013
Brain Anomolies are Potential Biomarkers for Autism
Brain anomalies may serve as potential biomarkers for the early identification of the neurodevelopmental disorder.
Wednesday, July 10, 2013
Second Amyloid May Play a Role in Alzheimer's
The study is the first to identify deposits of the protein, called amylin, in the brains of people with Alzheimer's disease.
Monday, July 01, 2013
Scientific News
Analyzing Protein Structures in Their Native Environment
Enhanced-sensitivity NMR could reveal new clues to how proteins fold.
Biomarker Predicting Transplant Complications May be Key to Treating Them
A protein that can be used to predict if a stem cell transplant patient will suffer severe complications may also be the key to preventing those complications, an international research team based at the Indiana University School of Medicine reported Wednesday.
New Protein Cleanup Factors Found to Control Bacterial Growth
UMass Amherst researchers characterize previously mysterious proteolysis factors.
Proteins with ALS, Cancer Role Do Not Assume a Regular Shape
Our cells contain proteins, essential to functions like protein creation and DNA repair but also involved in forms of ALS and cancer, that never take a characteristic shape, a new study shows.
Key to Natural Detoxifier’s Reactivity Discovered
Results have implications for health, drug design and chemical synthesis.
New Protein Found in Immune Cells
Immunobiologists from the University of Freiburg discover Kidins220/ARMS in B cells and demonstrate its functions.
Cell's Waste Disposal System Regulates Body Clock Proteins
New way to identify interacting proteins could identify potential drug targets.
How a Molecular Motor Untangles Protein
Diseases such as Alzheimer’s, Parkinson’s and prion diseases, all involve “tangled” proteins.
Compound Doubles Up On Cancer Detection
Researchers have found that tagging a pair of markers found almost exclusively on a common brain cancer yields a cancer signal that is both more obvious and more specific to cancer.
How Cell Growth Triggers Cell Division
Researchers in Jan Skotheim's lab have discovered a previously unknown mechanism that controls how large cells grow, an insight that could one day provide insight into attacking diseases such as cancer.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,700+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos