Corporate Banner
Satellite Banner
Proteomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

NIH Study Uncovers Details of Early Stages in Muscle Formation and Regeneration

Published: Tuesday, April 23, 2013
Last Updated: Monday, April 22, 2013
Bookmark and Share
Mouse study findings may offer clues for understanding cell fusion.

Researchers at the National Institutes of Health have identified proteins that allow muscle cells in mice to form from the fusion of the early stage cells that give rise to the muscle cells.

The findings have implications for understanding how to repair and rehabilitate muscle tissue and to understanding other processes involving cell fusion, such as when a sperm fertilizes an egg, when viruses infect cells, or when specialized cells called osteoclasts dissolve and assimilate bone tissue in order to repair and maintain bones.

Their findings were published online in the Journal of Cell Biology.

"Through a process that starts with these progenitor cells, the body forms tissue that accounts for about one-third of its total weight," said the study's senior author, Leonid V. Chernomordik, Ph.D., of the Section on Membrane Biology at the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), the NIH institute where the research was conducted. "Our study provides the first look at the very early stages of this fusion process."

Dr. Chernomordik conducted the study along with researchers at NICHD (Evgenia. Leikina, D.V.M.,; Kamram. Melikov, Ph.D.; Samristha Sanyal, Ph.D.; Santosh Verma, Bokke Eun, Ph.D.; Claudia Gebert, D.V.M., Ph.D.; Karl Pfeifer, Ph.D., and Vladimir.A. Lizunov, Ph.D.) and at Tel Aviv University, in Israel (Michael M. Kozlov, Ph.D.).

Muscle cells originate from precursor cells known as myoblasts. Myoblasts fuse to form a single long tubular cell called a myocyte (a muscle fiber). Muscle tissue is composed of large collections of these fibers.

The fusion of myoblasts into muscle fibers takes place early in fetal development. With exercise and throughout a person's life, the process is repeated to form new muscle mass and repair old or damaged muscle.

It takes many hours for cells to prepare for fusion, but the fusion process itself is very rapid. To study myoblast fusion, the researchers first blocked the start of the fusion process with a chemical.

Ordinarily, the mouse myoblasts the researchers worked with fuse at varied intervals. By blocking fusion, and then lifting the block, the researchers were able to synchronize fusion in a large number of cells, making the process easier to study.

The researchers identified the two distinct stages of cell fusion and the essential proteins that facilitate these stages.

In the first stage, two myoblasts meet, and proteins on cell surface membranes cause the membranes to meld.

In the second stage, a pore opens between the cells and their contents merge. This second step is guided by proteins inside the cells.

The work identifies two cell surface proteins that act at the start of myoblast fusion. These proteins belong to a large family of proteins called annexins. Annexins are also known to play a role in membrane repair and in inflammation.

The researchers identified the protein dynamin, found inside the cell, as essential to the second stage of the cell fusion process.

"Dynamin also has an unexplained link to certain rare and poorly understood myopathies - disorders characterized by underdeveloped muscles," said Dr. Chernomordik.

Dr. Chernomordik continued, "We hope that further examination of the role of dynamin in cell fusion will lead to a greater understanding of these conditions."


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,400+ scientific posters on ePosters
  • More than 4,900+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Oxygen Can Impair Cancer Immunotherapy
Researchers have identified a mechanism within the lungs where anticancer immune resposnse is inhibited.
Friday, August 26, 2016
New Inflammatory Disease Discovered
NIH researchers have discovered a rare and potentially deadly disease - otulipenia - the mostly affects children.
Tuesday, August 23, 2016
How Parkinson’s Disease Alters Brain Activity Over Time
The NIH study provides a new tool for testing experimental medications aimed at alleviating symptoms and slowing the rate at which the diseases damage the brain.
Tuesday, August 16, 2016
Genetic Cause of Rare Pediatric Neuropathy Identified
NIH mouse study identifies the mechanism responsible for a rare form of pediatric neuropathy.
Thursday, August 04, 2016
Uncovering Rhinovirus C Structure
Researchers have determined the structure of rhinovirus C. Their findings may aid the development of antiviral therapies and vaccines.
Wednesday, July 27, 2016
Advancing Protein Visualization
Cryo-EM methods can determine structures of small proteins bound to potential drug candidates.
Friday, May 27, 2016
Study Finds Factors That May Influence Influenza Vaccine Effectiveness
Researchers at NIH have suggested that the long-held approach to predicting seasonal influenza vaccine effectiveness may need to be revisited.
Wednesday, April 20, 2016
Visualizing a Cancer Drug Target at Atomic Resolution
Using cryo-electron microscopy, researchers were able to view, in atomic detail, the binding of a potential small molecule drug to a key protein in cancer cells.
Wednesday, February 10, 2016
Genomic Signature Shared by Five Types of Cancer
National Institutes of Health researchers have identified a striking signature in tumor DNA that occurs in five different types of cancer.
Monday, February 08, 2016
Natural Protein Points to New Inflammation Treatment
Findings may offer insight to effective treatments for inflammatory diseases, such as rheumatoid arthritis, psoriasis, and multiple sclerosis.
Friday, February 05, 2016
Biomarkers Outperform Symptoms in Parsing Psychosis Subgroups
Multiple biological pathways lead to similar symptoms - NIH-funded study.
Thursday, December 10, 2015
NIH Supports New Studies to Find Alzheimer’s Biomarkers in Down Syndrome
Initiative will track dementia onset, progress in Down syndrome volunteers.
Tuesday, December 01, 2015
Dementia Linked to Deficient DNA Repair
Mutant forms of breast cancer factor 1 (BRCA1) are associated with breast and ovarian cancers but according to new findings, in the brain the normal BRCA1 gene product may also be linked to Alzheimer’s disease.
Tuesday, December 01, 2015
Molecule Proves Key to Brain Repair After Stroke
Scientists found that a molecule known as growth and differentiation factor 10 (GDF10) plays a key role in repair mechanisms following stroke.
Tuesday, November 10, 2015
Nuclear Transport Problems Linked to ALS and FTD
NIH-supported studies point to potential new target for treating neurodegenerative diseases.
Monday, October 19, 2015
Scientific News
Molecule Prevents Effect of Chemotherapy
Danish researchers from Aarhus University Hospital and Aarhus University have made a possible breakthrough in the treatment of colorectal cancer.
Peptide Mutants Help Identify Vulnerability in Tumor Cells
Researchers can detect mutant proteins based on MS data and the results of exome sequencing.
Misfiring Drugs Hit the Wrong Targets
Anti-HIV protein inhibitor drugs can bind to the wrong protein, causing unwanted side effects.
New Possibilities Tumor Research
Grazer researchers say gene activity of the tumor from the analysis of circulating DNA in blood ahead.
Parkinson’s Test Could Aid Early Detection
A test that can detect Parkinson’s disease in the early stages of the illness has moved a step closer.
Oxygen Can Impair Cancer Immunotherapy
Researchers have identified a mechanism within the lungs where anticancer immune resposnse is inhibited.
Symmetry is Key to Collagen
Researchers describe how symmetry may be the key to growing collagen fibres outside the body.
Breakthrough in GPCR Understanding
Integral Molecular announces breakthrough in understanding the functionality of GPCRs, the largest class of drug targets in human disease.
Designing Ultrasound Tools with Lego-Like Proteins
Study outlines how ultrasound technology can be used for imaging in conjuction with protein engineering.
Enzyme that Triggers Cell Demise in ALS Identified
Scientists from Harvard have identified a key instigator of nerve cell damage in people with amyotrophic lateral sclerosis (ALS).
Scroll Up
Scroll Down
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,900+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!