Corporate Banner
Satellite Banner
Proteomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

First Steps of Synapse Building Captured in Live Zebra Fish Embryos

Published: Tuesday, April 23, 2013
Last Updated: Tuesday, April 23, 2013
Bookmark and Share
Using spinning disk microscopy, scientists have gained a new window on how synapse-building components move to worksites in the central nervous system.

What researchers captured in these see-through embryos — in what may be one of the first views of early glutamate-driven synapse formation in a living vertebrate — were orderly movements of protein-carrying packets along axons to a specific site where a synapse would be formed.

The discovery, in research funded by the National Institutes of Health, is described in a paper placed online ahead of publication in the April 25 issue of the open-access journal Cell Reports. It is noteworthy because most synapses formed in vertebrates use glutamate as a neurotransmitter, and breakdowns in the process have been tied to conditions such as autism, schizophrenia and mental retardation.

The zebra fish has become one of the leading research models for studying early development, in general, and human-disease states.

In this case, researchers used immunofluorescence labeling to highlight the area they put under the microscopes. The embryos they studied were barely 24-hours old and a millimeter in length, but neurons in their spinal cord were already forming connections called synapses. Images were taken every 30 seconds over two hours.

"If we zoom out a bit and look at development in the human, the majority of synapse formation occurs in the cortex after birth and continues for the first two years in a baby's life," said Philip Washbourne, a professor of biology and member of the UO's Institute of Neuroscience.

Previous studies, done in vitro, contradicted each other, with one, in 2000, identifying a single packet of building blocks arriving at a pre-synaptic terminal. The other, in 2004, identified two protein packets. After watching the process unfold live, with imaging over long time spans, Washbourne said: "We now see at least three, and maybe more, such deliveries."

"Axons are long processes — think of them as highways — of neurons. In humans, these can be a meter long, from spinal cord to your big toe," he said. It's in the cell body where all the proteins are made, and they have to be transported out. Is it done by a single bus or by several cars? These results point to additional layers of complexity in the established mechanisms of synaptogenesis."

The new research also showed that sequence also is crucial. Two different pre-synaptic packages of molecules repeatedly arrived in the same order. A key building block — the protein synapsin — always arrived third. As these delivery vehicles traveled the axonal highway, another protein, a cyclin-dependent kinase known as Cdk5, acts as a stoplight at the synapse-construction site, where phosphorylation occurs. More research is needed on Cdk5, Washbourne said.

"Understanding how all this happens will inform us to what's going wrong in neurodevelopment that leads to diseases," Washbourne said. "We have indications that the glue that gets all this going includes a gene that has been linked to autism, so knowing how these molecules start the process of synapse formation — and what goes wrong in people with mutations in these genes — might allow for a therapeutic targeting to correct the mutations and manipulate the stop signs."

Co-authors with Washbourne on the paper were Courtney Easley-Neal and Javier Fierro Jr., doctoral students in Washbourne's lab, and JoAnn Buchanan, an electron microscopist in the Department of Molecular and Cellular Physiology in the Stanford University School of Medicine.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Light Signals from Living Cells
Fluorescent protein markers delivered under high pressure.
Cellular 'Relief Valve'
A team led by scientists at The Scripps Research Institute (TSRI) has solved a long-standing mystery in cell biology by showing essentially how a key “relief-valve” in cells does its job.
Genomic Signature Shared by Five Types of Cancer
National Institutes of Health researchers have identified a striking signature in tumor DNA that occurs in five different types of cancer.
Protein Protects Against Flu in Mice
The engineered molecule doesn’t provoke inflammation and may hail a new class of antivirals.
Cat Stem Cell Therapy Gives Humans Hope
By the time Bob the cat came to the UC Davis veterinary hospital, he had used up most of his nine lives.
Crowdfunding the Fight Against Cancer
From budding social causes to groundbreaking businesses to the next big band, crowdfunding has helped connect countless worthy projects with like-minded people willing to support their efforts, even in small ways. But could crowdfunding help fight cancer?
Natural Protein Points to New Inflammation Treatment
Findings may offer insight to effective treatments for inflammatory diseases, such as rheumatoid arthritis, psoriasis, and multiple sclerosis.
Natural Protein Points to New Inflammation Treatment
Findings may offer insight to effective treatments for inflammatory diseases, such as rheumatoid arthritis, psoriasis, and multiple sclerosis.
Enzyme Links Age-Related Inflammation, Cancer
Researchers have shown that an enzyme key to regulating gene expression -- and also an oncogene when mutated -- is critical for the expression of numerous inflammatory compounds that have been implicated in age-related increases in cancer and tissue degeneration.
New Biomarker to Assess Stem Cells Developed
A research team led by scientists from UCL have found a way to assess the viability of 'manufactured' stem cells known as induced pluripotent stem cells (iPSCs). The team's discovery offers a new way to fast-track screening methods used in stem cell research.
Scroll Up
Scroll Down
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!