Corporate Banner
Satellite Banner
Proteomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Suppressing Protein may Stem Alzheimer's Disease Process

Published: Friday, April 26, 2013
Last Updated: Friday, April 26, 2013
Bookmark and Share
Runaway regulator clogs removal of toxic debris – NIH funded study.

Scientists funded by the National Institutes of Health have discovered a potential strategy for developing treatments to stem the disease process in Alzheimer’s disease. It’s based on unclogging removal of toxic debris that accumulates in patients’ brains, by blocking activity of a little-known regulator protein called CD33.

“Too much CD33 appears to promote late-onset Alzheimer’s by preventing support cells from clearing out toxic plaques, key risk factors for the disease,” explained Rudolph Tanzi, Ph.D.  , of Massachusetts General Hospital and Harvard University, a grantee of the NIH’s National Institute of Mental Health (NIMH) and National Institute on Aging (NIA). “Future medications that impede CD33 activity in the brain might help prevent or treat the disorder.”

Tanzi and colleagues report on their findings April 25, 2013 in the journal Neuron.

Variation in the CD33 gene turned up as one of four prime suspects in the largest genome-wide dragnet of Alzheimer’s-affected families, reported by Tanzi and colleagues in 2008. The gene was known to make a protein that regulates the immune system, but its function in the brain remained elusive. To discover how it might contribute to Alzheimer’s, the researchers brought to bear human genetics, biochemistry and human brain tissue, mouse and cell-based experiments.

They found over-expression of CD33 in support cells, called microglia, in postmortem brains from patients who had late-onset Alzheimer’s disease, the most common form of the illness. The more CD33 protein on the cell surface of microglia, the more beta-amyloid proteins and plaques — damaging debris — had accumulated in their brains. Moreover, the researchers discovered that brains of people who inherited a version of the CD33 gene that protected them from Alzheimer’s conspicuously showed reduced amounts of CD33 on the surface of microglia and less beta-amyloid.

Brain levels of beta-amyloid and plaques were also markedly reduced in mice engineered to under-express or lack CD33. Microglia cells in these animals were more efficient at clearing out the debris, which the researchers traced to levels of CD33 on the cell surface.

Evidence also suggested that CD33 works in league with another Alzheimer’s risk gene in microglia to regulate inflammation in the brain.

The study results — and those of a recent rat study that replicated many features of the human illness — add support to the prevailing theory that accumulation of beta-amyloid plaques are hallmarks of Alzheimer’s pathology. They come at a time of ferment in the field, spurred by other recent contradictory evidence  suggesting that these presumed culprits might instead play a protective role.

Since increased CD33 activity in microglia impaired beta-amyloid clearance in late onset Alzheimer’s, Tanzi and colleagues are now searching for agents that can cross the blood-brain barrier and block it.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Novel Mechanism to Explain Autoimmune Uveitis Proposed
A new study on mice suggests that bacteria in the gut may provide a kind of training ground for immune cells to attack the eye.
Wednesday, August 19, 2015
Nuclear Process in the Brain That May Affect Disease Uncovered
Scientists have shown that the passage of molecules through the nucleus of a star-shaped brain cell, called an astrocyte, may play a critical role in health and disease.
Tuesday, August 18, 2015
Scientists Uncover Nuclear Process in the Brain that May Affect Disease
NIH-funded study highlights the possible role of glial brain cells in neurological disorders.
Tuesday, August 18, 2015
PINK1 Protein Crucial for Removing Broken-Down Energy Reactors
NIH study suggests potential new pathway to target for treating ALS and other diseases.
Thursday, August 13, 2015
Tell-tale Biomarker Detects Early Breast Cancer in NIH-funded Study
The study published online in the issue of Nature Communications.
Thursday, August 13, 2015
Researchers Identify Protein in Mice that Helps Prepare for Healthy Egg-sperm Union
Protein RGS2 plays a critical role in preserving the fertilizability of the ovulated egg.
Wednesday, August 05, 2015
Protein Related to Long Term Traumatic Brain Injury Complications Discovered
NIH-study shows protein found at higher levels in military members who have suffered multiple TBIs.
Tuesday, August 04, 2015
Crystal Clear Images Uncover Secrets of Hormone Receptors
NIH researchers gain better understanding of how neuropeptide hormones trigger chemical reactions in cells.
Monday, August 03, 2015
Vital Protein in Healthy Fertilization Process Identified
Researchers at the National Institutes of Health have discovered a protein that plays a vital role in healthy egg-sperm union in mice.
Monday, July 27, 2015
NIH Joins Public-Private Partnership to Fund Research on Autism Biomarkers
Biomarkers Consortium project to improve tools for measuring and treating social impairment in children with autism.
Tuesday, July 21, 2015
Mystery of the Tubulin Code Unravelled
NIH study provides a glimpse into the code that controls variety of cell functions.
Wednesday, May 13, 2015
Mouse Study Reveals Potential Clue to Extra Fingers or Toes
NIH-funded study finds that gene appears to regulate protein signals inside the cell.
Tuesday, December 02, 2014
NIH Grant for Texas Biomed to Perform Mass Spec-Based Studies into Heart Disease
Institute awarded $2.7M grant from the NIH to fund innovative approaches to genetics research for the development of new therapies for heart disease and other conditions.
Wednesday, August 20, 2014
GTEx Project to Expand Functional Studies of Genomic Variation
Larger set of human tissues to be analyzed to contribute to a database and tissue bank that researchers can use to study how genomic variants influence gene activity.
Wednesday, August 06, 2014
Subcellular Imaging Visualizes Structures of Brain Receptors
The advance opens a new window to study protein interactions in cell membranes in exquisite detail.
Tuesday, August 05, 2014
Scientific News
Cellular Contamination Pathway for Heavy Elements Identified
Berkeley Lab scientists find that an iron-binding protein can transport actinides into cells.
Lemon Juice and Human Norovirus
Citric acid may prevent the highly contagious norovirus from infecting humans, scientists discovered from the German Cancer Research Center.
Signature of Microbiomes Linked to Schizophrenia
Studying microbiomes in throat may help identify causes and treatments of brain disorder.
Structural Discoveries Could Aid in Better Drug Design
Scientists have uncovered the structural details of how some proteins interact to turn two different signals into a single integrated output.
Protein Found to Play a Key Role in Blocking Pathogen Survival
Calprotectin fends off microbial invaders by limiting access to iron, an important nutrient.
Study Identifies the Off Switch for Biofilm Formation
New discovery could help prevent the formation of infectious bacterial films on hospital equipment.
How DNA ‘Proofreader’ Proteins Pick and Edit Their Reading Material
Researchers from North Carolina State University and the University of North Carolina at Chapel Hill have discovered how two important proofreader proteins know where to look for errors during DNA replication and how they work together to signal the body’s repair mechanism.
Protein Found to Control Inflammatory Response
A new Northwestern Medicine study shows that a protein called POP1 prevents severe inflammation and, potentially, diseases caused by excessive inflammatory responses.
X-ray Laser Experiment Could Help in Designing Drugs for Brain Disorders
Scientists found that when two protein structures in the brain join up, they act as an amplifier for a slight increase in calcium concentration, triggering a gunshot-like release of neurotransmitters from one neuron to another.
Team Identifies Structure of Tumor-Suppressing Protein
An international group of researchers led by Carnegie Mellon University physicists Mathias Lösche and Frank Heinrich have established the structure of an important tumor suppressing protein, PTEN.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!