Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Merck Millipore Launches MILLIPLEX® MAP Kits

Published: Tuesday, May 07, 2013
Last Updated: Tuesday, May 07, 2013
Bookmark and Share
Enables detection of multiple pluripotency markers in a single measurement.

Merck Millipore has announced availability of the MILLIPLEX® MAP Human Stem Cell Pluripotency Magnetic Bead Kits, which enable the analysis of many different pluripotency biomarkers in a single measurement.

These kits are the first commercially available multiplexed protein biomarker assays based on the Luminex® xMAP® platform for this important research area.

This new application of trusted bead-based multiplex technology gives researchers rapid feedback on the potency status of stem cell cultures and offers a significant advantage over existing techniques, which detect a limited number of proteins with a semi-quantitative output for a single sample.

Merck Millipore's new MILLIPLEX® MAP kits examine protein biomarkers that indicate the potency of stem cells, enabling pluripotent stem cells to be distinguished from multipotent or differentiating cells.

These new kits save time and resources by accurately detecting large numbers of pluripotency markers in one measurement. Kits can be used on cultures of induced pluripotent stem cells, human embryonic stem cells, cancer stem cells or cancer cell lines.

Two kits are available for assessing stem cell pluripotency. The MILLIPLEX® MAP Human Stem Cell Pluripotency Magnetic Bead Kit 1 monitors the expression of the transcription factors Oct 3/4, Sox2, Nanog and c-Myc, which play critical roles in the maintenance of pluripotency and self-renewal in stem cells.

The MILLIPLEX® MAP Human Stem Cell Pluripotency Magnetic Bead Kit 2 contains seven additional pluripotency-related markers, including a transcription factor, a translational regulator, transmembrane proteins and cell surface glycostructures.

These assays are essential for assessing the potency of stem cell cultures in studies ranging from cancer and developmental biology research to bioprocess monitoring. MILLIPLEX® MAP assays make it easy to analyze both cell surface and intracellular proteins.

"The MILLIPLEX® MAP Stem Cell Pluripotency Kit 1 is a valuable tool for stem cell research. We obtained very interesting and promising results," said Frank Edenhofer, Ph.D., Head of the Stem Cell Engineering Group, Institute of Reconstructive Neurobiology, University of Bonn, LIFE & BRAIN Center. "It is noteworthy that this assay enabled us to observe even early onset of differentiation in iPS cell cultures."

"Stem cells are of great interest for regenerative medicine and drug discovery efforts, and researchers must be able to effectively characterize the potency status of pluripotent stem cells to advance their progress toward clinical use," said Linda Meeh, Ph.D., Director of Marketing for Immunoassays and Multiplexing.

Meeh continued, "MILLIPLEX® MAP kits offer a quick and simple way to achieve this characterization, generating a comprehensive assessment of the overall quality of cell cultures."

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Novel Mechanism for Activation of SIRT1
Assay format allows for simple, sensitive detection of sirtuin activity on any desired substrate.
Wednesday, April 24, 2013
Merck Millipore Announces New Genomic Biomarker Services
Genetic and epigenetic technologies added to established CRO services for biomarker development, validation and testing.
Wednesday, December 05, 2012
Merck Millipore Announces Opening of its GMP Bioproduction Facility in France
Enables accelerated process development and production of proteins/monoclonal antibodies.
Friday, September 21, 2012
Scientific News
Non-Disease Proteins Kill Brain Cells
Scientists at the forefront of cutting-edge research into neurodegenerative diseases such as Alzheimer’s and Parkinson’s have shown that the mere presence of protein aggregates may be as important as their form and identity in inducing cell death in brain tissue.
Closing the Loop on an HIV Escape Mechanism
Research team finds that protein motions regulate virus infectivity.
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Gut Microbes Signal to the Brain When They're Full
Don't have room for dessert? The bacteria in your gut may be telling you something.
Turning up the Tap on Microbes Leads to Better Protein Patenting
Mining millions of proteins could become faster and easier with a new technique that may also transform the enzyme-catalyst industry, according to University of California, Davis, researchers.
Exploring the Causes of Cancer
Queen's research to understand the regulation of a cell surface protein involved in cancer.
Measuring microRNAs in Blood to Speed Cancer Detection
A simple, ultrasensitive microRNA sensor holds promise for the design of new diagnostic strategies and, potentially, for the prognosis and treatment of pancreatic and other cancers.
Novel Proteins Linked to Huntington's Disease
University of Florida Health researchers have made a new discovery about Huntington's disease, showing that the gene that causes the fatal disorder makes an unexpected "cocktail" of mutant proteins that accumulate in the brain.
Enzyme Critical to Maintaining Telomere Length Discovered
New method expected to speed understanding of short telomere diseases and cancer.
New Method Identifies Up to Twice as Many Proteins and Peptides
An international team of researchers developed a method that identifies up to twice as many proteins and peptides in mass spectrometry data than conventional approaches.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos