Corporate Banner
Satellite Banner
Proteomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Merck Millipore Launches MILLIPLEX® MAP Kits

Published: Tuesday, May 07, 2013
Last Updated: Tuesday, May 07, 2013
Bookmark and Share
Enables detection of multiple pluripotency markers in a single measurement.

Merck Millipore has announced availability of the MILLIPLEX® MAP Human Stem Cell Pluripotency Magnetic Bead Kits, which enable the analysis of many different pluripotency biomarkers in a single measurement.

These kits are the first commercially available multiplexed protein biomarker assays based on the Luminex® xMAP® platform for this important research area.

This new application of trusted bead-based multiplex technology gives researchers rapid feedback on the potency status of stem cell cultures and offers a significant advantage over existing techniques, which detect a limited number of proteins with a semi-quantitative output for a single sample.

Merck Millipore's new MILLIPLEX® MAP kits examine protein biomarkers that indicate the potency of stem cells, enabling pluripotent stem cells to be distinguished from multipotent or differentiating cells.

These new kits save time and resources by accurately detecting large numbers of pluripotency markers in one measurement. Kits can be used on cultures of induced pluripotent stem cells, human embryonic stem cells, cancer stem cells or cancer cell lines.

Two kits are available for assessing stem cell pluripotency. The MILLIPLEX® MAP Human Stem Cell Pluripotency Magnetic Bead Kit 1 monitors the expression of the transcription factors Oct 3/4, Sox2, Nanog and c-Myc, which play critical roles in the maintenance of pluripotency and self-renewal in stem cells.

The MILLIPLEX® MAP Human Stem Cell Pluripotency Magnetic Bead Kit 2 contains seven additional pluripotency-related markers, including a transcription factor, a translational regulator, transmembrane proteins and cell surface glycostructures.

These assays are essential for assessing the potency of stem cell cultures in studies ranging from cancer and developmental biology research to bioprocess monitoring. MILLIPLEX® MAP assays make it easy to analyze both cell surface and intracellular proteins.

"The MILLIPLEX® MAP Stem Cell Pluripotency Kit 1 is a valuable tool for stem cell research. We obtained very interesting and promising results," said Frank Edenhofer, Ph.D., Head of the Stem Cell Engineering Group, Institute of Reconstructive Neurobiology, University of Bonn, LIFE & BRAIN Center. "It is noteworthy that this assay enabled us to observe even early onset of differentiation in iPS cell cultures."

"Stem cells are of great interest for regenerative medicine and drug discovery efforts, and researchers must be able to effectively characterize the potency status of pluripotent stem cells to advance their progress toward clinical use," said Linda Meeh, Ph.D., Director of Marketing for Immunoassays and Multiplexing.

Meeh continued, "MILLIPLEX® MAP kits offer a quick and simple way to achieve this characterization, generating a comprehensive assessment of the overall quality of cell cultures."


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Novel Mechanism for Activation of SIRT1
Assay format allows for simple, sensitive detection of sirtuin activity on any desired substrate.
Wednesday, April 24, 2013
Merck Millipore Announces New Genomic Biomarker Services
Genetic and epigenetic technologies added to established CRO services for biomarker development, validation and testing.
Wednesday, December 05, 2012
Merck Millipore Announces Opening of its GMP Bioproduction Facility in France
Enables accelerated process development and production of proteins/monoclonal antibodies.
Friday, September 21, 2012
Scientific News
TOPLESS Plants Provide Clues to Human Molecular Interactions
Scientists at Van Andel Research Institute have revealed an important molecular mechanism in plants that has significant similarities to certain signaling mechanisms in humans, which are closely linked to early embryonic development and to diseases such as cancer.
Toxin from Salmonid Fish has Potential to Treat Cancer
Researchers from the University of Freiburg decode molecular mechanism of fish pathogen.
Study Finds Non-Genetic Cancer Mechanism
Cancer can be caused solely by protein imbalances within cells, a study of ovarian cancer has found.
Long-sought Discovery Fills in Missing Details of Cell 'Switchboard'
A biomedical breakthrough reveals never-before-seen details of the human body’s cellular switchboard that regulates sensory and hormonal responses.
Rice Disease-Resistance Discovery Closes the Loop for Scientific Integrity
Researchers reveal how disease resistant rice detects and responds to bacterial infections.
The Mystery of the Instant Noodle Chromosomes
Researchers from the Lomonosov Moscow State University evaluated the benefits of placing the DNA on the principle of spaghetti.
New Mussel-Inspired Surgical Protein Glue
Korean scientists have developed a light-activated, mussel protein-based bioadhesive that works on the same principles as mussels attaching to underwater surfaces and insects maintaining structural balance and flexibility.
Vital Protein in Healthy Fertilization Process Identified
Researchers at the National Institutes of Health have discovered a protein that plays a vital role in healthy egg-sperm union in mice.
Teeth Reveal Lifetime Exposures to Metals, Toxins
Researchers have identified dental biomarkers to reveal links between early iron exposure and late life brain diseases.
View of Bacterial Pump at the Atomic Level
Researchers have determined the structure of a simple but previously unexamined pump that controls the passage of proteins through a bacterial cell membrane, an achievement that offers new insight into the mechanics that allow bacteria to manipulate their environments.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!