Corporate Banner
Satellite Banner
Proteomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Type 1 Diabetes and Heart Disease Linked by Inflammatory Protein

Published: Wednesday, May 08, 2013
Last Updated: Wednesday, May 08, 2013
Bookmark and Share
Therapeutic agents that block the protein calprotectin could potentially reverse or slow the progression of atherosclerosis in people with type 1 diabetes.

Type 1 (insulin-dependent) diabetes appears to increase the risk of heart disease, the leading cause of death among people with high blood sugar, partly by stimulating the production of calprotectin, a protein that sparks an inflammatory process that fuels the buildup of artery-clogging plaque. The findings, made in mice and confirmed with human data, suggest new therapeutic targets for reducing heart disease in people with type 1 diabetes. Led by Columbia University Medical Center (CUMC) researchers in collaboration with investigators at New York University and the University of Pittsburgh, the study was published today in the online edition of Cell Metabolism.

Diabetes is known to raise the risk for atherosclerosis, a disease in which fatty deposits known as plaque accumulate inside arteries. Over time, the arteries harden and narrow, leading to coronary artery disease and other forms of heart disease. Atherosclerosis is the leading cause of heart attacks, strokes, and peripheral vascular disease—collectively known as coronary heart disease, the leading cause of death in the United States.

Scientists have known that diabetes leads to atherosclerosis. The study shows that this is associated with increased circulating levels of inflammatory white blood cells (WBCs), which contribute to the build-up of plaque. “But exactly how diabetes causes white blood cells to proliferate and lead to heart disease has been a mystery,” said study co-leader Ira J. Goldberg, MD, the Dickinson W. Richards Professor of Medicine at CUMC.

In studies of mice with type 1 diabetes, Dr. Goldberg and his colleagues found that high blood sugar stimulates a type of inflammatory WBC known as neutrophils to release the protein calprotectin (also known as S100A8/9). The calprotectin travels to the bone marrow, where it binds to a cell-surface receptor called RAGE receptor, on common myeloid progenitor cells, which are involved in the production of various types of blood cells. This, in turn, leads to the proliferation of cells, known as granulocyte macrophage progenitor cells, which trigger the proliferation of even more neutrophils and of monocytes (another type of inflammatory WBC). Finally, these new WBCs enter the circulation and make their way to arterial plaques, fueling their progression.

The researchers also found that normalizing the mice’s blood glucose dampened this pathway, leading to an overall decrease in inflammation.

To determine the relevance of these findings in humans, the researchers analyzed data from 290 patients in the Pittsburgh Epidemiology of Diabetes Complications (EDC) Study, led by EDC Principal Investigator Trevor J. Orchard, who has been following people with diabetes for 18 years. Total WBC, neutrophil, and monocyte counts were all significantly associated with the development of coronary artery disease. The researchers also analyzed blood samples from a subgroup of EDC patients. Those who had developed coronary artery disease had significantly higher levels of calprotectin, compared with patients who had not developed coronary artery disease.

“The human data appear to fit with the animal data, in that both WBCs and calprotectin are associated with heart disease,” said co-lead author Andrew J. Murphy, PhD, postdoctoral fellow in medicine at CUMC. The other lead author is Prabhakara R. Nagareddy, PhD, postdoctoral fellow at CUMC.

“Our findings point to the importance of controlling blood sugar levels to limit the production of the inflammatory cells that drive atherosclerosis; they also suggest novel therapeutic strategies, such as inhibiting the production of calprotectin or preventing its binding to the RAGE receptor,” said study co-leader Alan R. Tall, MD, the Tilden Weger Bieler Professor of Medicine at CUMC.

The CUMC team is currently studying how type 2 diabetes increases one’s risk for heart disease.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

An Innovative Algorithm to Decipher How Drugs Work Inside the Body
Researchers at Columbia University Medical Center (CUMC) have developed a computer algorithm that is helping scientists see how drugs produce pharmacological effects inside the body.
Friday, July 24, 2015
Non-Gluten Proteins as Targets of Immune Response to Wheat in Celiac Disease
The results were reported online in the Journal of Proteome Research.
Thursday, December 18, 2014
DNA Robots Find and Tag Blood Cells
Researchers have created a fleet of molecular “robots” that can home in on specific human cells and mark them for drug therapy or destruction.
Thursday, August 08, 2013
Protein Linked to Cognitive Decline in Alzheimer’s Identified
Findings highlight potential therapeutic targets.
Wednesday, June 26, 2013
Anthrax Toxin Receptor 2 (ANTXR2) Protein is Necessary for Successful Labor and Birth
Columbia University study found that female mice lacking ANTXR2 were able to get pregnant but unable to deliver.
Tuesday, June 26, 2012
Scientific News
Lemon Juice and Human Norovirus
Citric acid may prevent the highly contagious norovirus from infecting humans, scientists discovered from the German Cancer Research Center.
Signature of Microbiomes Linked to Schizophrenia
Studying microbiomes in throat may help identify causes and treatments of brain disorder.
Structural Discoveries Could Aid in Better Drug Design
Scientists have uncovered the structural details of how some proteins interact to turn two different signals into a single integrated output.
Protein Found to Play a Key Role in Blocking Pathogen Survival
Calprotectin fends off microbial invaders by limiting access to iron, an important nutrient.
Study Identifies the Off Switch for Biofilm Formation
New discovery could help prevent the formation of infectious bacterial films on hospital equipment.
How DNA ‘Proofreader’ Proteins Pick and Edit Their Reading Material
Researchers from North Carolina State University and the University of North Carolina at Chapel Hill have discovered how two important proofreader proteins know where to look for errors during DNA replication and how they work together to signal the body’s repair mechanism.
Protein Found to Control Inflammatory Response
A new Northwestern Medicine study shows that a protein called POP1 prevents severe inflammation and, potentially, diseases caused by excessive inflammatory responses.
X-ray Laser Experiment Could Help in Designing Drugs for Brain Disorders
Scientists found that when two protein structures in the brain join up, they act as an amplifier for a slight increase in calcium concentration, triggering a gunshot-like release of neurotransmitters from one neuron to another.
Team Identifies Structure of Tumor-Suppressing Protein
An international group of researchers led by Carnegie Mellon University physicists Mathias Lösche and Frank Heinrich have established the structure of an important tumor suppressing protein, PTEN.
Why We’re Smarter Than Chickens
Toronto researchers have discovered that a single molecular event in our cells could hold the key to how we evolved to become the smartest animal on the planet.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!