Corporate Banner
Satellite Banner
Proteomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Reducing Caloric Intake Delays Nerve Cell Loss

Published: Thursday, May 23, 2013
Last Updated: Thursday, May 23, 2013
Bookmark and Share
Study points to role of protein in anti-aging benefits of calorie restriction.

Activating an enzyme known to play a role in the anti-aging benefits of calorie restriction delays the loss of brain cells and preserves cognitive function in mice, according to a study published in the May 22 issue of The Journal of Neuroscience. The findings could one day guide researchers to discover drug alternatives that slow the progress of age-associated impairments in the brain.

Previous studies have shown that reducing calorie consumption extends the lifespan of a variety of species and decreases the brain changes that often accompany aging and neurodegenerative diseases such as Alzheimer’s. There is also evidence that caloric restriction activates an enzyme called Sirtuin 1 (SIRT1), which studies suggest offers some protection against age-associated impairments in the brain.

In the current study, Li-Huei Tsai — director of the Picower Institute for Learning and Memory and Picower Professor of Neuroscience at MIT — along with postdoc Johannes Gräff and others at MIT tested whether reducing caloric intake would delay the onset of nerve cell loss that is common in neurodegenerative disease, and if so, whether SIRT1 activation was driving this effect. The group not only confirmed that caloric restriction delays nerve cell loss, but also found that a drug that activates SIRT1 produces the same effects.

“There has been great interest in finding compounds that mimic the benefits of caloric restriction that could be used to delay the onset of age-associated problems and/or diseases,” says Dr. Luigi Puglielli, who studies aging at the University of Wisconsin, Madison, and was not involved in this study. “If proven safe for humans, this study suggests such a drug could be used as a preventive tool to delay the onset of neurodegeneration associated with several diseases that affect the aging brain."

In the study, Tsai’s team first decreased the normal diets of mice genetically engineered to rapidly undergo changes in the brain associated with neurodegeneration by 30 percent. Following three months on the diet, the mice completed several learning and memory tests. “We not only observed a delay in the onset of neurodegeneration in the calorie-restricted mice, but the animals were spared the learning and memory deficits of mice that did not consume reduced-calorie diets,” Tsai says.

Curious if they could recreate the benefits of caloric restriction without changing the animals’ diets, the scientists gave a separate group of mice a drug that activates SIRT1. Similar to what the researchers found in the mice exposed to reduced-calorie diets, the mice that received the drug had less cell loss and better cellular connectivity than the mice that did not receive the drug. Additionally, the mice that received the drug treatment performed as well as normal mice in learning and memory tests.

“The question now is whether this type of treatment will work in other animal models, whether it’s safe for use over time, and whether it only temporarily slows down the progression of neurodegeneration or stops it altogether,” Tsai says.

The research was supported by the National Institute on Aging and the Swiss National Science Foundation.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Synthetic Antibody Detects Proteins
Research could lead to nanosensors that recognize fibrinogen, insulin, or other biomarkers.
Friday, January 15, 2016
New Device Uses Carbon Nanotubes to Snag Molecules
Nanotube “forest” in a microfluidic channel may help detect rare proteins and viruses.
Tuesday, December 22, 2015
CRISPR-Cas9 Genome Editing Hurdle Overcome
Team re-engineers system to dramatically cut down on editing errors; improvements advance future human applications.
Thursday, December 03, 2015
A Natural Light Switch
MIT scientists identify and map the protein behind a light-sensing mechanism.
Tuesday, September 29, 2015
Biologists Find Unexpected Role for Amyloid-Forming Protein
Yeast protein could offer clues to how Alzheimer’s plaques form in the brain.
Monday, September 28, 2015
How Flu Viruses Gain The Ability To Spread
New study reveals the soft palate is a key site for evolution of airborne transmissibility.
Friday, September 25, 2015
Targeting DNA
Protein-based sensor could detect viral infection or kill cancer cells.
Tuesday, September 22, 2015
Targeting DNA
Protein-based sensor could detect viral infection or kill cancer cells.
Tuesday, September 22, 2015
Learning About Human Health Using Sewage
PhD student Mariana Matus studies human waste to understand individual and community health.
Thursday, September 17, 2015
Protein Found to Play a Key Role in Blocking Pathogen Survival
Calprotectin fends off microbial invaders by limiting access to iron, an important nutrient.
Wednesday, August 26, 2015
Real-Time Data for Cancer Therapy
Biochemical sensor implanted at initial biopsy could allow doctors to better monitor and adjust cancer treatments.
Thursday, August 06, 2015
Bacterial Computing
The “friendly” bacteria inside our digestive systems are being given an upgrade, which may one day allow them to be programmed to detect and ultimately treat diseases such as colon cancer and immune disorders.
Monday, July 13, 2015
New Approach to Global Health Challenges
MIT’s Institute for Medical Engineering and Science brings many tools to the quest for new disease treatments and diagnostic devices.
Friday, September 27, 2013
Why Tumors Become Drug-Resistant
New findings could lead to drugs that fight back when tumors don’t respond to treatment.
Monday, August 12, 2013
Study IDs Key Protein for Cell Death
Findings may offer a new way to kill cancer cells by forcing them into an alternative programmed-death pathway.
Tuesday, May 14, 2013
Scientific News
Structure of Brain Plaques in Huntington's
Researchers at the University of Pittsburgh School of Medicine have shown that the core of the protein clumps found in the brains of people with Huntington's disease have a distinctive structure, a finding that could shed light on the molecular mechanisms underlying the neurodegenerative disorder.
The Power of Three
Overlooked portion of cell “death receptor” critical in some cancers, autoimmune diseases.
Biomarker for Recurring HPV-Linked Oropharyngeal Cancers
A look-back analysis of HPV infection antibodies in patients treated for oropharyngeal (mouth and throat) cancers linked to HPV infection suggests at least one of the antibodies could be useful in identifying those at risk for a recurrence of the cancer, say scientists at the Johns Hopkins University.
Light Signals from Living Cells
Fluorescent protein markers delivered under high pressure.
Cellular 'Relief Valve'
A team led by scientists at The Scripps Research Institute (TSRI) has solved a long-standing mystery in cell biology by showing essentially how a key “relief-valve” in cells does its job.
Genomic Signature Shared by Five Types of Cancer
National Institutes of Health researchers have identified a striking signature in tumor DNA that occurs in five different types of cancer.
Protein Protects Against Flu in Mice
The engineered molecule doesn’t provoke inflammation and may hail a new class of antivirals.
Cat Stem Cell Therapy Gives Humans Hope
By the time Bob the cat came to the UC Davis veterinary hospital, he had used up most of his nine lives.
Crowdfunding the Fight Against Cancer
From budding social causes to groundbreaking businesses to the next big band, crowdfunding has helped connect countless worthy projects with like-minded people willing to support their efforts, even in small ways. But could crowdfunding help fight cancer?
Natural Protein Points to New Inflammation Treatment
Findings may offer insight to effective treatments for inflammatory diseases, such as rheumatoid arthritis, psoriasis, and multiple sclerosis.
Scroll Up
Scroll Down
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!