Corporate Banner
Satellite Banner
Proteomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Enzyme-Activating Antibodies Revealed As Marker for Severe Rheumatoid Arthritis

Published: Thursday, May 30, 2013
Last Updated: Thursday, May 30, 2013
Bookmark and Share
Finding could lead to earlier diagnosis and new, more aggressive treatment for worst cases.

In a series of lab experiments designed to unravel the workings of a key enzyme widely considered a possible trigger of rheumatoid arthritis, researchers at Johns Hopkins have found that in the most severe cases of the disease, the immune system makes a unique subset of antibodies that have a disease-promoting role.

 Reporting in the journal Science Translational Medicine online May 22, the Johns Hopkins team describes how it found the novel antibodies to peptidylarginine deiminase 4, or PAD4, in blood samples from people with aggressive inflammation and connective tissue damage.

 Researchers say the presence of so-called PAD3/PAD4 cross-reactive autoantibodies could serve as the basis for the first antibody-specific diagnostic test to distinguish those with severe rheumatoid arthritis from those with less aggressive forms of the disease.

 “Identifying early on a subset of patients with severe rheumatoid arthritis could benefit their health, as these patients could start aggressive drug therapy immediately and find the most effective treatment option,” says senior study investigator Antony Rosen, M.D. Rosen, director of rheumatology and the Mary Betty Stevens Professor at the Johns Hopkins University School of Medicine, says that a third, or 1 million of the more than 3 million Americans – mostly women – estimated to have rheumatoid arthritis have an aggressive form of the disease.

 In the study, the antibodies were present – in 18 percent of 44 fluid samples from one research collection and in 12 percent of another collection of 194 – but only in people with severe cases of rheumatoid arthritis. Past research shows that those with the most aggressive disease are less likely to respond to anti-inflammatory treatments with steroids and other drugs.

 An examination of patients’ medical records revealed that 80 percent of patients with the antibody saw their disease worsen over the previous year, while only 53 percent without the antibody showed disease progression. In comparing average scores of disease-damaged joints, researchers found that those with the antibody had an average deterioration in joints and bones by a score of 49. Those without the antibody had an average degradation in their score of 7.5, indicating much milder disease.

 In a related finding, the Johns Hopkins team also uncovered how the PAD3/PAD4 cross-reactive auto-antibodies might contribute to more severe, erosive disease in rheumatoid arthritis. The team performed a series of experiments to gauge the antibodies’ effects on PAD4 in response to varying cell levels of calcium, on which PAD enzymes depend.

Lab experiments showed that the antibodies greatly increase PAD4 enzyme function at the low levels of calcium normally present in human cells. Results showed that PAD4 activity was 500 times greater in the presence of antibodies than when they were absent. Tests of the antibody and enzymes’ chemical structures later showed that the antibodies bind to PAD4 in the same region as calcium, suggesting to researchers that the antibodies might be substituting for calcium in activating the enzyme.

 According to Rosen, the series of experiments, which took two years to complete, represents the first evidence of an antibody having a direct role in generating the targets of the immune response, or auto-antigens, in rheumatoid arthritis.

 “Our results suggest that drugs inhibiting the PAD4 enzyme may have real benefit in patients with severe rheumatoid arthritis and represent an important field of study for investigating new and alternative treatments,” says lead study investigator and biologist Erika Darrah, Ph.D.

Darrah says the team next plans long-term monitoring of arthritis sufferers to find out when the antibody first appears in the blood, and when intervention may have maximum impact in preventing or stalling disease progression. The team also plans further experiments to see if the antibody is taking control of the chemical pathways normally used by other cell proteins to control PAD4 sensitivity to calcium.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 4,000+ scientific posters on ePosters
  • More than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Uncovering the Genetics Behind High Blood Pressure
Results suggest a role for blood vessels themselves in controlling blood pressure.
Wednesday, September 14, 2016
A Simple Blood Test May Catch Early Pancreatic Cancer
Currently, disease usually found too late to save lives.
Wednesday, October 30, 2013
Molecular Marker Predicts Patients Most Likely to Benefit Longest From Two Popular Cancer Drugs
Preliminary study needs further confirmation.
Wednesday, September 11, 2013
Crucial Brain-Signaling Molecule Requires Coordinated Motion to Turn On
Study could help yield new drugs for brain disorders.
Monday, August 12, 2013
Researchers Link New Molecular Culprit to Breast Cancer Progression
Johns Hopkins researchers have uncovered a protein “partner” commonly used by breast cancer cells to unlock genes needed for spreading the disease around the body.
Wednesday, November 28, 2012
Scientific News
Protein-Based “Cancer Signature” Uncovered
Researchers investigated the expression of ribosomal proteins in human tissues and discovered a cancer type specific signature which could be used to predict the progression of the disease.
Predicting Leukaemia Development in Cancer Patients
Biomarker may predict which formerly treated cancer patients will develop highly fatal form of leukemia.
‘NoBody,’ a Microprotein On a Mission
Researchers identify over 400 microproteins encoded in the human genome, one of which clears unneeded genetic material inside cells.
Top 10 Life Science Innovations of 2016
2016 has seen the release of some truly innovative products. To help you digest these developments, The Scientist have listed their top picks for the year.
Largest Resource of Protein-Protein Interactions
Researchers have developed the largest ever database of protein-protein interactions.
Bright Red Fluorescent Protein Created
Scientists have created a bright red, fluorescent protein that could be used to track essential cellular processes.
Protein Self-Regulates Abundance
Researchers have uncovered how a protein, that plays a crucial role in embryonic stem cell renewal, is regulated.
'Lab on the Skin' for Sweat Analysis
Northwestern University researchers develop a low-cost wearable electronic device that collects and analyzes sweat for health monitoring.
Building Better Nanodiscs
Researchers have improved upon the design of nanodiscs that provide an unprecedented view of viral infection.
Breast Cancer Cells Starve for Cystine
Depriving triple negative breast cancer, a treatment-resistant form of breast cancer, of cystine results in cancer cell death.
Scroll Up
Scroll Down
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
4,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!